Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
|
4 |
from langchain_text_splitters import CharacterTextSplitter
|
@@ -6,14 +8,12 @@ from langchain_community.vectorstores import FAISS
|
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
-
from transformers import pipeline, AutoTokenizer
|
10 |
-
|
11 |
-
# Optional but recommended addition
|
12 |
from huggingface_hub import login
|
13 |
-
import os
|
14 |
|
|
|
15 |
if os.environ.get("HF_TOKEN"):
|
16 |
-
login(token=os.environ["HF_TOKEN"])
|
17 |
|
18 |
def load_documents(file_path="study_materials"):
|
19 |
documents = []
|
@@ -29,46 +29,55 @@ def load_documents(file_path="study_materials"):
|
|
29 |
|
30 |
def create_qa_system():
|
31 |
try:
|
32 |
-
# Load documents
|
33 |
documents = load_documents()
|
34 |
if not documents:
|
35 |
raise ValueError("π No study materials found")
|
36 |
-
|
37 |
-
# Text splitting
|
38 |
text_splitter = CharacterTextSplitter(
|
39 |
chunk_size=1100,
|
40 |
chunk_overlap=200,
|
41 |
separator="\n\n"
|
42 |
)
|
43 |
texts = text_splitter.split_documents(documents)
|
44 |
-
|
45 |
-
#
|
46 |
embeddings = HuggingFaceEmbeddings(
|
47 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
48 |
)
|
49 |
|
50 |
# Vector store
|
51 |
db = FAISS.from_documents(texts, embeddings)
|
52 |
-
|
53 |
-
#
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
pipe = pipeline(
|
56 |
"text2text-generation",
|
57 |
model="google/flan-t5-large",
|
58 |
-
max_length=600,
|
59 |
-
temperature=0.7,
|
60 |
tokenizer=tokenizer,
|
|
|
|
|
61 |
do_sample=True,
|
62 |
top_k=50,
|
63 |
-
device=-1
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
-
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
# Create QA
|
70 |
return RetrievalQA.from_llm(
|
71 |
-
llm=
|
72 |
retriever=db.as_retriever(search_kwargs={"k": 3}),
|
73 |
return_source_documents=True
|
74 |
)
|
@@ -86,7 +95,7 @@ def ask_question(question, history):
|
|
86 |
try:
|
87 |
result = qa.invoke({"query": question})
|
88 |
answer = result["result"]
|
89 |
-
sources =
|
90 |
return f"{answer}\n\nπ Sources: {', '.join(sources)}"
|
91 |
except Exception as e:
|
92 |
return f"Error: {str(e)[:150]}"
|
@@ -96,4 +105,4 @@ gr.ChatInterface(
|
|
96 |
title="Study Assistant",
|
97 |
description="Upload PDF/TXT files in 'study_materials' folder and ask questions!",
|
98 |
theme="soft"
|
99 |
-
).launch()
|
|
|
1 |
import os
|
2 |
+
import gc
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
|
6 |
from langchain_text_splitters import CharacterTextSplitter
|
|
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain_community.llms import HuggingFacePipeline
|
11 |
+
from transformers import pipeline, AutoTokenizer, BitsAndBytesConfig
|
|
|
|
|
12 |
from huggingface_hub import login
|
|
|
13 |
|
14 |
+
# Handle HF token securely
|
15 |
if os.environ.get("HF_TOKEN"):
|
16 |
+
login(token=os.environ["HF_TOKEN"])
|
17 |
|
18 |
def load_documents(file_path="study_materials"):
|
19 |
documents = []
|
|
|
29 |
|
30 |
def create_qa_system():
|
31 |
try:
|
32 |
+
# Load and split documents
|
33 |
documents = load_documents()
|
34 |
if not documents:
|
35 |
raise ValueError("π No study materials found")
|
36 |
+
|
|
|
37 |
text_splitter = CharacterTextSplitter(
|
38 |
chunk_size=1100,
|
39 |
chunk_overlap=200,
|
40 |
separator="\n\n"
|
41 |
)
|
42 |
texts = text_splitter.split_documents(documents)
|
43 |
+
|
44 |
+
# Create embeddings
|
45 |
embeddings = HuggingFaceEmbeddings(
|
46 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
47 |
)
|
48 |
|
49 |
# Vector store
|
50 |
db = FAISS.from_documents(texts, embeddings)
|
51 |
+
|
52 |
+
# Quantization config
|
53 |
+
quant_config = BitsAndBytesConfig(
|
54 |
+
load_in_8bit=True,
|
55 |
+
llm_int8_threshold=6.0
|
56 |
+
)
|
57 |
+
|
58 |
+
# LLM setup with optimizations
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
60 |
pipe = pipeline(
|
61 |
"text2text-generation",
|
62 |
model="google/flan-t5-large",
|
|
|
|
|
63 |
tokenizer=tokenizer,
|
64 |
+
max_length=400,
|
65 |
+
temperature=0.7,
|
66 |
do_sample=True,
|
67 |
top_k=50,
|
68 |
+
device=-1, # Force CPU usage
|
69 |
+
model_kwargs={
|
70 |
+
"torch_dtype": torch.float16,
|
71 |
+
"quantization_config": quant_config
|
72 |
+
}
|
73 |
)
|
74 |
+
|
75 |
+
# Memory cleanup
|
76 |
+
gc.collect()
|
77 |
+
|
78 |
+
# Create QA system
|
79 |
return RetrievalQA.from_llm(
|
80 |
+
llm=HuggingFacePipeline(pipeline=pipe),
|
81 |
retriever=db.as_retriever(search_kwargs={"k": 3}),
|
82 |
return_source_documents=True
|
83 |
)
|
|
|
95 |
try:
|
96 |
result = qa.invoke({"query": question})
|
97 |
answer = result["result"]
|
98 |
+
sources = {os.path.basename(doc.metadata['source']) for doc in result['source_documents']}
|
99 |
return f"{answer}\n\nπ Sources: {', '.join(sources)}"
|
100 |
except Exception as e:
|
101 |
return f"Error: {str(e)[:150]}"
|
|
|
105 |
title="Study Assistant",
|
106 |
description="Upload PDF/TXT files in 'study_materials' folder and ask questions!",
|
107 |
theme="soft"
|
108 |
+
).launch()
|