Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py (CPU-optimized)
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
@@ -23,8 +22,8 @@ def initialize_system():
|
|
23 |
if f.endswith(".pdf")]
|
24 |
|
25 |
text_splitter = RecursiveCharacterTextSplitter(
|
26 |
-
chunk_size=
|
27 |
-
chunk_overlap=
|
28 |
)
|
29 |
|
30 |
texts = []
|
@@ -42,7 +41,7 @@ def initialize_system():
|
|
42 |
# Vector store
|
43 |
vector_store = FAISS.from_documents(texts, embeddings)
|
44 |
|
45 |
-
# Load model
|
46 |
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
MODEL_NAME,
|
48 |
trust_remote_code=True,
|
@@ -53,7 +52,8 @@ def initialize_system():
|
|
53 |
MODEL_NAME,
|
54 |
trust_remote_code=True,
|
55 |
torch_dtype=torch.float16,
|
56 |
-
device_map="
|
|
|
57 |
)
|
58 |
|
59 |
return vector_store, model, tokenizer
|
@@ -61,46 +61,59 @@ def initialize_system():
|
|
61 |
try:
|
62 |
vector_store, model, tokenizer = initialize_system()
|
63 |
print("✅ System initialized successfully")
|
|
|
64 |
except Exception as e:
|
65 |
print(f"❌ Initialization failed: {str(e)}")
|
66 |
raise
|
67 |
|
68 |
def generate_response(query):
|
69 |
try:
|
70 |
-
|
|
|
71 |
context = "\n".join([d.page_content for d in docs])
|
72 |
|
|
|
73 |
prompt = f"""<|system|>
|
74 |
-
Answer using:
|
75 |
-
|
76 |
-
-
|
|
|
|
|
77 |
<|user|>{query}</s>
|
78 |
<|assistant|>"""
|
79 |
|
80 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
81 |
outputs = model.generate(
|
82 |
-
|
83 |
-
max_new_tokens=
|
84 |
-
temperature=0.
|
|
|
|
|
85 |
)
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
except Exception as e:
|
90 |
return "Please try again later."
|
91 |
|
92 |
-
#
|
93 |
-
with gr.Blocks() as demo:
|
94 |
-
gr.Markdown("# Customer
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
|
|
|
|
99 |
def respond(message, history):
|
100 |
response = generate_response(message)
|
101 |
history.append((message, response))
|
102 |
return "", history
|
103 |
-
|
|
|
104 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
105 |
|
106 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
|
|
22 |
if f.endswith(".pdf")]
|
23 |
|
24 |
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
+
chunk_size=1000, # Increased chunk size for better context
|
26 |
+
chunk_overlap=200
|
27 |
)
|
28 |
|
29 |
texts = []
|
|
|
41 |
# Vector store
|
42 |
vector_store = FAISS.from_documents(texts, embeddings)
|
43 |
|
44 |
+
# Load model with memory optimization
|
45 |
tokenizer = AutoTokenizer.from_pretrained(
|
46 |
MODEL_NAME,
|
47 |
trust_remote_code=True,
|
|
|
52 |
MODEL_NAME,
|
53 |
trust_remote_code=True,
|
54 |
torch_dtype=torch.float16,
|
55 |
+
device_map="auto",
|
56 |
+
low_cpu_mem_usage=True
|
57 |
)
|
58 |
|
59 |
return vector_store, model, tokenizer
|
|
|
61 |
try:
|
62 |
vector_store, model, tokenizer = initialize_system()
|
63 |
print("✅ System initialized successfully")
|
64 |
+
print(f"Memory usage: {torch.cuda.memory_allocated()/1024**3:.1f}GB") if torch.cuda.is_available() else None
|
65 |
except Exception as e:
|
66 |
print(f"❌ Initialization failed: {str(e)}")
|
67 |
raise
|
68 |
|
69 |
def generate_response(query):
|
70 |
try:
|
71 |
+
# Context retrieval
|
72 |
+
docs = vector_store.similarity_search(query, k=3)
|
73 |
context = "\n".join([d.page_content for d in docs])
|
74 |
|
75 |
+
# Optimized prompt
|
76 |
prompt = f"""<|system|>
|
77 |
+
You are a customer service expert. Answer using:
|
78 |
+
{context}
|
79 |
+
- Be concise (2-3 sentences)
|
80 |
+
- If information is missing: "Let me check with the team"
|
81 |
+
</s>
|
82 |
<|user|>{query}</s>
|
83 |
<|assistant|>"""
|
84 |
|
85 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
86 |
outputs = model.generate(
|
87 |
+
inputs.input_ids,
|
88 |
+
max_new_tokens=300,
|
89 |
+
temperature=0.3,
|
90 |
+
do_sample=True,
|
91 |
+
pad_token_id=tokenizer.eos_token_id
|
92 |
)
|
93 |
|
94 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
95 |
+
return response.split("<|assistant|>")[-1].strip()
|
96 |
|
97 |
except Exception as e:
|
98 |
return "Please try again later."
|
99 |
|
100 |
+
# Enhanced interface
|
101 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
102 |
+
gr.Markdown("# Enterprise Customer Support")
|
103 |
+
with gr.Row():
|
104 |
+
chatbot = gr.Chatbot(height=500, label="Conversation")
|
105 |
+
with gr.Row():
|
106 |
+
msg = gr.Textbox(placeholder="Ask about our services...", scale=7)
|
107 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
108 |
|
109 |
+
clear = gr.ClearButton([msg, chatbot])
|
110 |
+
|
111 |
def respond(message, history):
|
112 |
response = generate_response(message)
|
113 |
history.append((message, response))
|
114 |
return "", history
|
115 |
+
|
116 |
+
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
117 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
118 |
|
119 |
+
demo.launch(server_port=7860)
|