random2222 commited on
Commit
2e62dd1
·
verified ·
1 Parent(s): 449019e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -55
app.py CHANGED
@@ -1,64 +1,101 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ from langchain.document_loaders import PyPDFLoader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
8
 
9
+ # Configuration
10
+ DOCS_DIR = "business_docs"
11
+ EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
12
+ MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
13
 
14
+ # Initialize components once at startup
15
+ def initialize_system():
16
+ # Load and process PDFs from business_docs folder
17
+ if not os.path.exists(DOCS_DIR):
18
+ raise FileNotFoundError(f"Business documents folder '{DOCS_DIR}' not found")
19
+
20
+ pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")]
21
+ if not pdf_files:
22
+ raise ValueError(f"No PDF files found in {DOCS_DIR} folder")
23
 
24
+ # Process documents
25
+ text_splitter = RecursiveCharacterTextSplitter(
26
+ chunk_size=1000,
27
+ chunk_overlap=200
28
+ )
29
+
30
+ texts = []
31
+ for pdf in pdf_files:
32
+ loader = PyPDFLoader(pdf)
33
+ pages = loader.load_and_split(text_splitter)
34
+ texts.extend(pages)
35
 
36
+ # Create vector store
37
+ embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
38
+ vector_store = FAISS.from_documents(texts, embeddings)
39
+
40
+ # Load model with quantization for faster inference
41
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ MODEL_NAME,
44
+ device_map="auto",
45
+ load_in_8bit=True
46
+ )
47
+
48
+ return vector_store, model, tokenizer
49
 
50
+ # Initialize system components
51
+ try:
52
+ vector_store, model, tokenizer = initialize_system()
53
+ print("System initialized successfully with business documents")
54
+ except Exception as e:
55
+ print(f"Initialization error: {str(e)}")
56
+ raise
57
 
58
+ # Response generation with context
59
+ def generate_response(query):
60
+ # Retrieve relevant context
61
+ docs = vector_store.similarity_search(query, k=3)
62
+ context = "\n".join([doc.page_content for doc in docs])
63
+
64
+ # Create instruction prompt
65
+ prompt = f"""<s>[INST] You are a customer support agent.
66
+ Answer ONLY using information from the provided business documents.
67
+ If unsure, say "I don't have information about that."
68
+
69
+ Context: {context}
70
+ Question: {query} [/INST]"""
71
+
72
+ # Generate response
73
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
74
+ outputs = model.generate(
75
+ **inputs,
76
+ max_new_tokens=500,
77
+ temperature=0.3,
78
+ do_sample=True
79
+ )
80
+ return tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[-1].strip()
81
 
82
+ # Chat interface
83
+ with gr.Blocks() as demo:
84
+ gr.Markdown("## Business Support Chatbot\nAsk questions about our services!")
85
+
86
+ chatbot = gr.Chatbot(label="Conversation")
87
+ msg = gr.Textbox(label="Type your question")
88
+ clear = gr.Button("Clear History")
89
+
90
+ def respond(message, chat_history):
91
+ try:
92
+ response = generate_response(message)
93
+ except Exception as e:
94
+ response = "Sorry, I'm having trouble answering right now. Please try again later."
95
+ chat_history.append((message, response))
96
+ return "", chat_history
97
+
98
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
99
+ clear.click(lambda: None, None, chatbot, queue=False)
100
 
101
+ demo.launch()