Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,106 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
|
|
3 |
import torch
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Configuration
|
11 |
-
DOCS_DIR = "
|
12 |
-
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
MODEL_NAME = "microsoft/phi-2"
|
|
|
|
|
|
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
-
chunk_size=
|
26 |
-
chunk_overlap=200
|
|
|
27 |
)
|
28 |
-
|
29 |
-
texts = []
|
30 |
-
for pdf in pdf_files:
|
31 |
-
loader = PyPDFLoader(pdf)
|
32 |
-
pages = loader.load_and_split(text_splitter)
|
33 |
-
texts.extend(pages)
|
34 |
|
35 |
-
# Create
|
36 |
-
embeddings = HuggingFaceEmbeddings(
|
37 |
-
|
38 |
-
model_kwargs={'device': 'cpu'}
|
39 |
-
)
|
40 |
-
|
41 |
-
# Vector store
|
42 |
-
vector_store = FAISS.from_documents(texts, embeddings)
|
43 |
|
44 |
-
# Load
|
45 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
46 |
-
tokenizer.pad_token = tokenizer.eos_token # Fix padding issue
|
47 |
-
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
MODEL_NAME,
|
|
|
|
|
50 |
trust_remote_code=True,
|
51 |
-
torch_dtype=torch.float32 if not torch.cuda.is_available() else torch.float16,
|
52 |
device_map="auto",
|
53 |
low_cpu_mem_usage=True
|
54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
return
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
print("🚀 Using CUDA")
|
63 |
-
print(f"Memory usage: {torch.cuda.memory_allocated()/1024**3:.2f} GB")
|
64 |
-
else:
|
65 |
-
print("🧠 Using CPU")
|
66 |
-
except Exception as e:
|
67 |
-
print(f"❌ Initialization failed: {str(e)}")
|
68 |
-
raise
|
69 |
|
70 |
-
def
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Prompt template optimized for Phi-2
|
77 |
-
prompt = f"""Context:
|
78 |
-
{context}
|
79 |
-
|
80 |
-
Question: {query}
|
81 |
-
Answer:"""
|
82 |
-
|
83 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
84 |
-
outputs = model.generate(
|
85 |
-
inputs.input_ids,
|
86 |
-
max_new_tokens=300,
|
87 |
-
temperature=0.3,
|
88 |
-
do_sample=True,
|
89 |
-
pad_token_id=tokenizer.eos_token_id
|
90 |
-
)
|
91 |
-
|
92 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
93 |
-
return response.split("Answer:")[-1].strip()
|
94 |
-
|
95 |
except Exception as e:
|
96 |
-
|
97 |
-
|
98 |
-
# Gradio UI
|
99 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
100 |
-
gr.Markdown("# 🧠 Enterprise Customer Support Chatbot")
|
101 |
-
|
102 |
-
chatbot = gr.Chatbot(height=500, label="Conversation")
|
103 |
-
|
104 |
-
with gr.Row():
|
105 |
-
msg = gr.Textbox(placeholder="Ask about our services...", scale=7)
|
106 |
-
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
107 |
|
|
|
|
|
|
|
|
|
108 |
clear = gr.ClearButton([msg, chatbot])
|
109 |
|
110 |
-
|
111 |
-
response = generate_response(message)
|
112 |
-
history.append((message, response))
|
113 |
-
return "", history
|
114 |
-
|
115 |
-
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
116 |
-
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
117 |
|
118 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
import torch
|
4 |
+
from huggingface_hub import login
|
5 |
+
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
|
6 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain_community.llms import HuggingFacePipeline
|
11 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
12 |
+
|
13 |
+
# HF Authentication
|
14 |
+
login(token=os.environ.get('HF_TOKEN'))
|
15 |
|
16 |
# Configuration
|
17 |
+
DOCS_DIR = "study_materials"
|
|
|
18 |
MODEL_NAME = "microsoft/phi-2"
|
19 |
+
EMBEDDINGS_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
20 |
+
MAX_TOKENS = 300
|
21 |
+
CHUNK_SIZE = 1000
|
22 |
|
23 |
+
def load_documents():
|
24 |
+
documents = []
|
25 |
+
for filename in os.listdir(DOCS_DIR):
|
26 |
+
path = os.path.join(DOCS_DIR, filename)
|
27 |
+
try:
|
28 |
+
if filename.endswith(".pdf"):
|
29 |
+
documents.extend(PyMuPDFLoader(path).load())
|
30 |
+
elif filename.endswith(".txt"):
|
31 |
+
documents.extend(TextLoader(path).load())
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error loading {filename}: {str(e)}")
|
34 |
+
return documents
|
35 |
+
|
36 |
+
def create_qa_system():
|
37 |
+
# Load and split documents
|
38 |
+
documents = load_documents()
|
39 |
+
if not documents:
|
40 |
+
raise gr.Error("No documents found in 'study_materials' folder")
|
41 |
|
42 |
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
chunk_size=CHUNK_SIZE,
|
44 |
+
chunk_overlap=200,
|
45 |
+
separators=["\n\n", "\n", " "]
|
46 |
)
|
47 |
+
texts = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Create vector store
|
50 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
51 |
+
db = FAISS.from_documents(texts, embeddings)
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Load Phi-2 with authentication
|
54 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
|
|
|
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
MODEL_NAME,
|
57 |
+
use_auth_token=True, # Critical change for gated models
|
58 |
+
torch_dtype=torch.float32,
|
59 |
trust_remote_code=True,
|
|
|
60 |
device_map="auto",
|
61 |
low_cpu_mem_usage=True
|
62 |
)
|
63 |
+
|
64 |
+
pipe = pipeline(
|
65 |
+
"text-generation",
|
66 |
+
model=model,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
max_new_tokens=MAX_TOKENS,
|
69 |
+
temperature=0.7,
|
70 |
+
do_sample=True,
|
71 |
+
top_k=40,
|
72 |
+
device_map="auto"
|
73 |
+
)
|
74 |
|
75 |
+
return RetrievalQA.from_chain_type(
|
76 |
+
llm=HuggingFacePipeline(pipeline=pipe),
|
77 |
+
chain_type="stuff",
|
78 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
79 |
+
return_source_documents=True
|
80 |
+
)
|
81 |
|
82 |
+
def format_response(response):
|
83 |
+
answer = response["result"].split("</s>")[0].split("\nOutput:")[-1].strip()
|
84 |
+
sources = list({os.path.basename(doc.metadata["source"]) for doc in response["source_documents"]})
|
85 |
+
return f"{answer}\n\n📚 Sources: {', '.join(sources)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
def process_query(question, history):
|
88 |
try:
|
89 |
+
qa = create_qa_system()
|
90 |
+
formatted_q = f"Instruct: {question}\nOutput:"
|
91 |
+
response = qa.invoke({"query": formatted_q})
|
92 |
+
return format_response(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
except Exception as e:
|
94 |
+
print(f"Error: {str(e)}")
|
95 |
+
return f"⚠️ Error: {str(e)[:100]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
with gr.Blocks(title="Phi-2 Study Assistant", theme=gr.themes.Soft()) as app:
|
98 |
+
gr.Markdown("## 📚 Phi-2 Study Assistant\nUpload study materials to 'study_materials' and ask questions!")
|
99 |
+
chatbot = gr.Chatbot(height=400)
|
100 |
+
msg = gr.Textbox(label="Your Question")
|
101 |
clear = gr.ClearButton([msg, chatbot])
|
102 |
|
103 |
+
msg.submit(process_query, [msg, chatbot], [msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
if __name__ == "__main__":
|
106 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|