Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -16,66 +16,76 @@ MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
16 |
def initialize_system():
|
17 |
# Validate documents folder
|
18 |
if not os.path.exists(DOCS_DIR):
|
19 |
-
raise FileNotFoundError(f"
|
20 |
|
21 |
# Load and process PDFs
|
22 |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")]
|
23 |
if not pdf_files:
|
24 |
-
raise ValueError(f"No
|
25 |
|
|
|
26 |
text_splitter = RecursiveCharacterTextSplitter(
|
27 |
-
chunk_size=
|
28 |
-
chunk_overlap=
|
29 |
)
|
30 |
|
31 |
documents = []
|
32 |
for pdf_path in pdf_files:
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
# Create embeddings
|
37 |
-
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
38 |
vector_store = FAISS.from_documents(documents, embeddings)
|
39 |
|
40 |
-
#
|
41 |
bnb_config = BitsAndBytesConfig(
|
42 |
load_in_4bit=True,
|
43 |
-
bnb_4bit_use_double_quant=True,
|
44 |
bnb_4bit_quant_type="nf4",
|
45 |
bnb_4bit_compute_dtype=torch.float16,
|
46 |
)
|
47 |
|
48 |
-
# Load model
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
return vector_store, model, tokenizer
|
59 |
|
60 |
-
# Initialize system
|
61 |
try:
|
62 |
vector_store, model, tokenizer = initialize_system()
|
63 |
-
print("
|
64 |
except Exception as e:
|
65 |
-
print(f"
|
66 |
raise
|
67 |
|
68 |
# Response Generation
|
69 |
def generate_response(query):
|
70 |
try:
|
71 |
-
#
|
72 |
-
docs = vector_store.similarity_search(query, k=
|
73 |
-
context = "\n".join([
|
74 |
|
75 |
-
#
|
76 |
prompt = f"""<|system|>
|
77 |
-
|
78 |
-
If the answer isn't in the documents, respond: "I don't have that information."
|
79 |
|
80 |
Context: {context}</s>
|
81 |
<|user|>
|
@@ -87,36 +97,33 @@ def generate_response(query):
|
|
87 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
88 |
outputs = model.generate(
|
89 |
inputs.input_ids,
|
90 |
-
max_new_tokens=
|
91 |
-
temperature=0.
|
92 |
do_sample=True,
|
93 |
pad_token_id=tokenizer.eos_token_id
|
94 |
)
|
95 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
-
|
97 |
-
# Extract only the assistant's response
|
98 |
return response.split("<|assistant|>")[-1].strip()
|
99 |
|
100 |
except Exception as e:
|
101 |
-
return f"β οΈ Error: {str(e)}"
|
102 |
|
103 |
-
#
|
104 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
105 |
-
gr.Markdown("#
|
106 |
|
107 |
with gr.Row():
|
108 |
-
gr.Image("https://
|
109 |
-
|
110 |
-
gr.Markdown("Ask questions about our policies, products, and services!")
|
111 |
|
112 |
-
chatbot = gr.Chatbot(height=
|
113 |
-
msg = gr.Textbox(
|
114 |
clear = gr.Button("Clear History")
|
115 |
|
116 |
-
def respond(message,
|
117 |
response = generate_response(message)
|
118 |
-
|
119 |
-
return "",
|
120 |
|
121 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
122 |
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
16 |
def initialize_system():
|
17 |
# Validate documents folder
|
18 |
if not os.path.exists(DOCS_DIR):
|
19 |
+
raise FileNotFoundError(f"π Missing business documents folder: {DOCS_DIR}")
|
20 |
|
21 |
# Load and process PDFs
|
22 |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")]
|
23 |
if not pdf_files:
|
24 |
+
raise ValueError(f"β No PDFs found in {DOCS_DIR}")
|
25 |
|
26 |
+
# Process documents
|
27 |
text_splitter = RecursiveCharacterTextSplitter(
|
28 |
+
chunk_size=800, # Reduced for free tier memory
|
29 |
+
chunk_overlap=100
|
30 |
)
|
31 |
|
32 |
documents = []
|
33 |
for pdf_path in pdf_files:
|
34 |
+
try:
|
35 |
+
loader = PyPDFLoader(pdf_path)
|
36 |
+
documents.extend(loader.load_and_split(text_splitter))
|
37 |
+
except Exception as e:
|
38 |
+
print(f"β οΈ Error processing {pdf_path}: {str(e)}")
|
39 |
+
|
40 |
+
# Create embeddings with explicit settings
|
41 |
+
embeddings = HuggingFaceEmbeddings(
|
42 |
+
model_name=EMBEDDING_MODEL,
|
43 |
+
model_kwargs={'device': 'cpu'},
|
44 |
+
encode_kwargs={'normalize_embeddings': True},
|
45 |
+
cache_folder="/tmp/sentence_transformers"
|
46 |
+
)
|
47 |
|
|
|
|
|
48 |
vector_store = FAISS.from_documents(documents, embeddings)
|
49 |
|
50 |
+
# 4-bit quantization config
|
51 |
bnb_config = BitsAndBytesConfig(
|
52 |
load_in_4bit=True,
|
|
|
53 |
bnb_4bit_quant_type="nf4",
|
54 |
bnb_4bit_compute_dtype=torch.float16,
|
55 |
)
|
56 |
|
57 |
+
# Load model with error handling
|
58 |
+
try:
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
61 |
+
MODEL_NAME,
|
62 |
+
quantization_config=bnb_config,
|
63 |
+
device_map="auto",
|
64 |
+
trust_remote_code=True
|
65 |
+
)
|
66 |
+
except Exception as e:
|
67 |
+
raise RuntimeError(f"π€ Model loading failed: {str(e)}")
|
68 |
|
69 |
return vector_store, model, tokenizer
|
70 |
|
71 |
+
# Initialize system
|
72 |
try:
|
73 |
vector_store, model, tokenizer = initialize_system()
|
74 |
+
print("π System ready with business documents")
|
75 |
except Exception as e:
|
76 |
+
print(f"π₯ Critical error: {str(e)}")
|
77 |
raise
|
78 |
|
79 |
# Response Generation
|
80 |
def generate_response(query):
|
81 |
try:
|
82 |
+
# Context retrieval
|
83 |
+
docs = vector_store.similarity_search(query, k=2) # Reduced context chunks
|
84 |
+
context = "\n".join([d.page_content for d in docs])
|
85 |
|
86 |
+
# Zephyr prompt template
|
87 |
prompt = f"""<|system|>
|
88 |
+
Answer ONLY using the business documents. Unknown answers: "I don't have that information."
|
|
|
89 |
|
90 |
Context: {context}</s>
|
91 |
<|user|>
|
|
|
97 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
98 |
outputs = model.generate(
|
99 |
inputs.input_ids,
|
100 |
+
max_new_tokens=256, # Reduced for faster responses
|
101 |
+
temperature=0.2,
|
102 |
do_sample=True,
|
103 |
pad_token_id=tokenizer.eos_token_id
|
104 |
)
|
105 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
106 |
return response.split("<|assistant|>")[-1].strip()
|
107 |
|
108 |
except Exception as e:
|
109 |
+
return f"β οΈ Error: Please try again. Details: {str(e)[:100]}"
|
110 |
|
111 |
+
# Gradio Interface
|
112 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
113 |
+
gr.Markdown("# π Business Support Assistant")
|
114 |
|
115 |
with gr.Row():
|
116 |
+
gr.Image(value="https://placehold.co/100x30?text=Company+Logo", width=100)
|
117 |
+
gr.Markdown("Ask questions about our services and policies")
|
|
|
118 |
|
119 |
+
chatbot = gr.Chatbot(height=350)
|
120 |
+
msg = gr.Textbox(placeholder="Type your question...", label="")
|
121 |
clear = gr.Button("Clear History")
|
122 |
|
123 |
+
def respond(message, history):
|
124 |
response = generate_response(message)
|
125 |
+
history.append((message, response))
|
126 |
+
return "", history
|
127 |
|
128 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
129 |
clear.click(lambda: None, None, chatbot, queue=False)
|