Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
@@ -6,21 +6,13 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
|
11 |
# Configuration
|
12 |
DOCS_DIR = "business_docs"
|
13 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
14 |
MODEL_NAME = "microsoft/phi-2"
|
15 |
|
16 |
-
# Quantization config
|
17 |
-
quant_config = BitsAndBytesConfig(
|
18 |
-
load_in_4bit=True,
|
19 |
-
bnb_4bit_quant_type="nf4",
|
20 |
-
bnb_4bit_compute_dtype=torch.float16,
|
21 |
-
bnb_4bit_use_double_quant=False
|
22 |
-
)
|
23 |
-
|
24 |
def initialize_system():
|
25 |
# Document processing
|
26 |
if not os.path.exists(DOCS_DIR):
|
@@ -31,8 +23,8 @@ def initialize_system():
|
|
31 |
if f.endswith(".pdf")]
|
32 |
|
33 |
text_splitter = RecursiveCharacterTextSplitter(
|
34 |
-
chunk_size=
|
35 |
-
chunk_overlap=
|
36 |
)
|
37 |
|
38 |
texts = []
|
@@ -50,7 +42,7 @@ def initialize_system():
|
|
50 |
# Vector store
|
51 |
vector_store = FAISS.from_documents(texts, embeddings)
|
52 |
|
53 |
-
#
|
54 |
tokenizer = AutoTokenizer.from_pretrained(
|
55 |
MODEL_NAME,
|
56 |
trust_remote_code=True,
|
@@ -60,9 +52,8 @@ def initialize_system():
|
|
60 |
model = AutoModelForCausalLM.from_pretrained(
|
61 |
MODEL_NAME,
|
62 |
trust_remote_code=True,
|
63 |
-
|
64 |
-
|
65 |
-
torch_dtype=torch.float16
|
66 |
)
|
67 |
|
68 |
return vector_store, model, tokenizer
|
@@ -76,22 +67,21 @@ except Exception as e:
|
|
76 |
|
77 |
def generate_response(query):
|
78 |
try:
|
79 |
-
docs = vector_store.similarity_search(query, k=
|
80 |
context = "\n".join([d.page_content for d in docs])
|
81 |
|
82 |
prompt = f"""<|system|>
|
83 |
-
Answer using
|
84 |
-
- Max
|
85 |
- If unsure: "I'll check with the team"</s>
|
86 |
<|user|>{query}</s>
|
87 |
<|assistant|>"""
|
88 |
|
89 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
90 |
outputs = model.generate(
|
91 |
**inputs,
|
92 |
-
max_new_tokens=
|
93 |
-
temperature=0.1
|
94 |
-
pad_token_id=tokenizer.eos_token_id
|
95 |
)
|
96 |
|
97 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
|
@@ -99,7 +89,7 @@ def generate_response(query):
|
|
99 |
except Exception as e:
|
100 |
return "Please try again later."
|
101 |
|
102 |
-
#
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("# Customer Service Chatbot")
|
105 |
chatbot = gr.Chatbot()
|
|
|
1 |
+
# app.py (CPU-optimized)
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
|
11 |
# Configuration
|
12 |
DOCS_DIR = "business_docs"
|
13 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
14 |
MODEL_NAME = "microsoft/phi-2"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def initialize_system():
|
17 |
# Document processing
|
18 |
if not os.path.exists(DOCS_DIR):
|
|
|
23 |
if f.endswith(".pdf")]
|
24 |
|
25 |
text_splitter = RecursiveCharacterTextSplitter(
|
26 |
+
chunk_size=500, # Smaller chunks for CPU
|
27 |
+
chunk_overlap=50
|
28 |
)
|
29 |
|
30 |
texts = []
|
|
|
42 |
# Vector store
|
43 |
vector_store = FAISS.from_documents(texts, embeddings)
|
44 |
|
45 |
+
# Load model without quantization
|
46 |
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
MODEL_NAME,
|
48 |
trust_remote_code=True,
|
|
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
MODEL_NAME,
|
54 |
trust_remote_code=True,
|
55 |
+
torch_dtype=torch.float16,
|
56 |
+
device_map="cpu" # Force CPU
|
|
|
57 |
)
|
58 |
|
59 |
return vector_store, model, tokenizer
|
|
|
67 |
|
68 |
def generate_response(query):
|
69 |
try:
|
70 |
+
docs = vector_store.similarity_search(query, k=1) # Less context
|
71 |
context = "\n".join([d.page_content for d in docs])
|
72 |
|
73 |
prompt = f"""<|system|>
|
74 |
+
Answer using: {context}
|
75 |
+
- Max 1 sentence
|
76 |
- If unsure: "I'll check with the team"</s>
|
77 |
<|user|>{query}</s>
|
78 |
<|assistant|>"""
|
79 |
|
80 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
81 |
outputs = model.generate(
|
82 |
**inputs,
|
83 |
+
max_new_tokens=100,
|
84 |
+
temperature=0.1
|
|
|
85 |
)
|
86 |
|
87 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
|
|
|
89 |
except Exception as e:
|
90 |
return "Please try again later."
|
91 |
|
92 |
+
# Simplified interface
|
93 |
with gr.Blocks() as demo:
|
94 |
gr.Markdown("# Customer Service Chatbot")
|
95 |
chatbot = gr.Chatbot()
|