Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,97 +8,83 @@ from langchain.chains import RetrievalQA
|
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
from transformers import pipeline, AutoTokenizer
|
10 |
|
11 |
-
|
12 |
-
DOCS_FOLDER = "study_materials"
|
13 |
-
CHUNK_SIZE = 1000
|
14 |
-
CHUNK_OVERLAP = 150
|
15 |
-
MODEL_NAME = "google/flan-t5-base"
|
16 |
-
|
17 |
-
def get_documents():
|
18 |
-
"""Load and process documents without external dependencies"""
|
19 |
documents = []
|
20 |
-
for
|
21 |
-
path = os.path.join(
|
22 |
-
if
|
23 |
loader = PyMuPDFLoader(path)
|
24 |
documents.extend(loader.load())
|
25 |
-
elif
|
26 |
loader = TextLoader(path)
|
27 |
documents.extend(loader.load())
|
28 |
return documents
|
29 |
|
30 |
-
def
|
31 |
try:
|
32 |
-
#
|
33 |
-
|
34 |
-
if not
|
35 |
-
raise
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
chunk_size=
|
40 |
-
chunk_overlap=
|
41 |
separator="\n\n"
|
42 |
)
|
43 |
-
|
44 |
|
45 |
-
#
|
46 |
embeddings = HuggingFaceEmbeddings(
|
47 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
48 |
)
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
|
53 |
-
#
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
55 |
-
|
56 |
-
|
57 |
-
model=
|
58 |
tokenizer=tokenizer,
|
59 |
-
max_length=
|
60 |
-
temperature=0.
|
61 |
-
device=-1
|
62 |
)
|
63 |
|
64 |
-
#
|
65 |
-
llm = HuggingFacePipeline(pipeline=
|
66 |
|
67 |
-
|
|
|
68 |
llm=llm,
|
69 |
-
|
70 |
-
retriever=vector_db.as_retriever(search_kwargs={"k": 3}),
|
71 |
return_source_documents=True
|
72 |
)
|
73 |
-
except Exception as
|
74 |
-
raise
|
75 |
|
76 |
-
# Initialize
|
77 |
try:
|
78 |
-
|
79 |
-
except Exception as
|
80 |
-
print(f"
|
81 |
raise
|
82 |
|
83 |
-
def
|
84 |
-
"""Process user queries with enhanced error handling"""
|
85 |
try:
|
86 |
-
result =
|
87 |
-
|
88 |
-
sources = {doc.metadata['source'] for doc in result['source_documents']}
|
89 |
-
return f"{
|
90 |
-
except Exception as
|
91 |
-
|
92 |
-
return "Error processing request. Please check document formatting."
|
93 |
|
94 |
-
# Create interface
|
95 |
gr.ChatInterface(
|
96 |
-
|
97 |
-
title="
|
98 |
-
description="Upload PDF/TXT files
|
99 |
-
|
100 |
-
"Summarize the main points from chapter 3",
|
101 |
-
"Explain the key concepts in section 2.1",
|
102 |
-
"What are the advantages discussed on page 4?"
|
103 |
-
]
|
104 |
).launch()
|
|
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
from transformers import pipeline, AutoTokenizer
|
10 |
|
11 |
+
def load_documents(file_path="study_materials"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
documents = []
|
13 |
+
for filename in os.listdir(file_path):
|
14 |
+
path = os.path.join(file_path, filename)
|
15 |
+
if filename.endswith(".pdf"):
|
16 |
loader = PyMuPDFLoader(path)
|
17 |
documents.extend(loader.load())
|
18 |
+
elif filename.endswith(".txt"):
|
19 |
loader = TextLoader(path)
|
20 |
documents.extend(loader.load())
|
21 |
return documents
|
22 |
|
23 |
+
def create_qa_system():
|
24 |
try:
|
25 |
+
# Load documents
|
26 |
+
documents = load_documents()
|
27 |
+
if not documents:
|
28 |
+
raise ValueError("📚 No study materials found")
|
29 |
|
30 |
+
# Text splitting
|
31 |
+
text_splitter = CharacterTextSplitter(
|
32 |
+
chunk_size=800,
|
33 |
+
chunk_overlap=100,
|
34 |
separator="\n\n"
|
35 |
)
|
36 |
+
texts = text_splitter.split_documents(documents)
|
37 |
|
38 |
+
# Embeddings
|
39 |
embeddings = HuggingFaceEmbeddings(
|
40 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
41 |
)
|
42 |
|
43 |
+
# Vector store
|
44 |
+
db = FAISS.from_documents(texts, embeddings)
|
45 |
|
46 |
+
# LLM setup with proper LangChain wrapper
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
48 |
+
pipe = pipeline(
|
49 |
+
"text2text-generation",
|
50 |
+
model="google/flan-t5-base",
|
51 |
tokenizer=tokenizer,
|
52 |
+
max_length=300,
|
53 |
+
temperature=0.3,
|
54 |
+
device=-1
|
55 |
)
|
56 |
|
57 |
+
# Wrap pipeline in LangChain component
|
58 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
59 |
|
60 |
+
# Create QA chain
|
61 |
+
return RetrievalQA.from_llm(
|
62 |
llm=llm,
|
63 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
|
|
64 |
return_source_documents=True
|
65 |
)
|
66 |
+
except Exception as e:
|
67 |
+
raise gr.Error(f"Error: {str(e)}")
|
68 |
|
69 |
+
# Initialize system
|
70 |
try:
|
71 |
+
qa = create_qa_system()
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Startup failed: {str(e)}")
|
74 |
raise
|
75 |
|
76 |
+
def ask_question(question, history):
|
|
|
77 |
try:
|
78 |
+
result = qa.invoke({"query": question})
|
79 |
+
answer = result["result"]
|
80 |
+
sources = list({doc.metadata['source'] for doc in result['source_documents']})
|
81 |
+
return f"{answer}\n\n📚 Sources: {', '.join(sources)}"
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error: {str(e)[:150]}"
|
|
|
84 |
|
|
|
85 |
gr.ChatInterface(
|
86 |
+
ask_question,
|
87 |
+
title="Study Assistant",
|
88 |
+
description="Upload PDF/TXT files in 'study_materials' folder and ask questions!",
|
89 |
+
theme="soft"
|
|
|
|
|
|
|
|
|
90 |
).launch()
|