random2222 commited on
Commit
3e11e62
·
verified ·
1 Parent(s): 4bdbf3f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -57
app.py CHANGED
@@ -1,64 +1,92 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
4
+ from langchain_text_splitters import CharacterTextSplitter
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain.chains import RetrievalQA
8
+ from transformers import pipeline, AutoTokenizer
9
 
10
+ def load_documents(file_path="file.pdf"):
11
+ # Supports both PDF and TXT files
12
+ documents = []
13
+ for filename in os.listdir(file_path):
14
+ path = os.path.join(file_path, filename)
15
+ if filename.endswith(".pdf"):
16
+ loader = PyMuPDFLoader(path)
17
+ documents.extend(loader.load())
18
+ elif filename.endswith(".txt"):
19
+ loader = TextLoader(path)
20
+ documents.extend(loader.load())
21
+ return documents
22
 
23
+ def create_qa_system():
24
+ try:
25
+ # 1. Load study materials
26
+ documents = load_documents()
27
+ if not documents:
28
+ raise ValueError("📚 No PDF/TXT files found in 'study_materials' folder")
29
+
30
+ # 2. Smart text splitting for educational content
31
+ text_splitter = CharacterTextSplitter(
32
+ chunk_size=800, # Optimized for textbook content
33
+ chunk_overlap=100,
34
+ separator="\n\n" # Preserve paragraph structure
35
+ )
36
+ texts = text_splitter.split_documents(documents)
37
+
38
+ # 3. Educational-focused embeddings
39
+ embeddings = HuggingFaceEmbeddings(
40
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
41
+ )
42
+
43
+ # 4. Create knowledge base
44
+ db = FAISS.from_documents(texts, embeddings)
45
+
46
+ # 5. Configure student-friendly AI
47
+ qa_pipeline = pipeline(
48
+ "text2text-generation",
49
+ model="google/flan-t5-base",
50
+ tokenizer=AutoTokenizer.from_pretrained("google/flan-t5-base"),
51
+ max_length=300, # Longer answers for explanations
52
+ temperature=0.3, # Balance creativity/facts
53
+ device=-1 # Force CPU usage
54
+ )
55
+
56
+ return RetrievalQA.from_chain_type(
57
+ llm=qa_pipeline,
58
+ chain_type="stuff",
59
+ retriever=db.as_retriever(search_kwargs={"k": 2}),
60
+ return_source_documents=True
61
+ )
62
+ except Exception as e:
63
+ raise gr.Error(f"🚨 Study Assistant Setup Failed: {str(e)}")
64
 
65
+ # Initialize system
66
+ try:
67
+ qa = create_qa_system()
68
+ except Exception as e:
69
+ print(f"Critical Error: {str(e)}")
70
+ raise
 
 
 
71
 
72
+ def ask_question(question, history):
73
+ try:
74
+ result = qa({"query": question})
75
+ answer = result["result"]
76
+ sources = list({doc.metadata['source'] for doc in result['source_documents']})
77
+ return f"{answer}\n\n📚 Sources: {', '.join(sources)}"
78
+ except Exception as e:
79
+ return f"❌ Error: {str(e)[:150]}"
80
 
81
+ # Student-friendly interface
82
+ gr.ChatInterface(
83
+ ask_question,
84
+ title="Study Buddy AI",
85
+ description="Ask questions about your course materials!",
86
+ examples=[
87
+ "Explain the key points from Chapter 3",
88
+ "What's the difference between mitosis and meiosis?",
89
+ "List the main causes of World War II"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ],
91
+ theme="soft"
92
+ ).launch()