Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,19 +6,8 @@ from langchain_community.vectorstores import FAISS
|
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
from transformers import pipeline, AutoTokenizer
|
11 |
|
12 |
-
# Custom prompt for detailed answers
|
13 |
-
QA_PROMPT = PromptTemplate(
|
14 |
-
template="""Generate a detailed explanation using only this context:
|
15 |
-
{context}
|
16 |
-
|
17 |
-
Question: {question}
|
18 |
-
Answer in complete paragraphs with examples:""",
|
19 |
-
input_variables=["context", "question"]
|
20 |
-
)
|
21 |
-
|
22 |
def load_documents(file_path="study_materials"):
|
23 |
documents = []
|
24 |
for filename in os.listdir(file_path):
|
@@ -36,73 +25,78 @@ def create_qa_system():
|
|
36 |
# Load and process documents
|
37 |
documents = load_documents()
|
38 |
if not documents:
|
39 |
-
raise ValueError("No
|
40 |
-
|
|
|
41 |
text_splitter = CharacterTextSplitter(
|
42 |
-
chunk_size=
|
43 |
-
chunk_overlap=
|
44 |
separator="\n\n"
|
45 |
)
|
46 |
texts = text_splitter.split_documents(documents)
|
47 |
|
|
|
48 |
embeddings = HuggingFaceEmbeddings(
|
49 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
50 |
)
|
|
|
|
|
51 |
db = FAISS.from_documents(texts, embeddings)
|
52 |
|
53 |
-
# Configure
|
54 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
55 |
-
|
56 |
"text2text-generation",
|
57 |
model="google/flan-t5-base",
|
58 |
tokenizer=tokenizer,
|
59 |
-
max_length=
|
60 |
-
temperature=0.
|
61 |
-
|
62 |
-
top_k=50,
|
63 |
-
device=-1
|
64 |
)
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
return RetrievalQA.from_chain_type(
|
69 |
llm=llm,
|
70 |
chain_type="stuff",
|
71 |
-
retriever=db.as_retriever(search_kwargs={"k": 3}),
|
72 |
-
chain_type_kwargs={"prompt": QA_PROMPT},
|
73 |
return_source_documents=True
|
74 |
)
|
75 |
except Exception as e:
|
76 |
-
raise gr.Error(f"Error: {str(e)}")
|
77 |
|
78 |
# Initialize system
|
79 |
try:
|
80 |
qa = create_qa_system()
|
81 |
except Exception as e:
|
82 |
-
print(f"Startup
|
83 |
raise
|
84 |
|
85 |
def ask_question(question, history):
|
86 |
try:
|
87 |
-
result = qa
|
88 |
answer = result["result"]
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
sources = list({doc.metadata['source'] for doc in result['source_documents']})
|
95 |
return f"{answer}\n\n📚 Sources: {', '.join(sources)}"
|
96 |
except Exception as e:
|
97 |
return f"Error: {str(e)[:150]}"
|
98 |
|
|
|
99 |
gr.ChatInterface(
|
100 |
ask_question,
|
101 |
-
title="
|
102 |
-
description="
|
103 |
examples=[
|
104 |
-
"Explain the
|
105 |
-
"
|
106 |
-
"Compare and contrast
|
107 |
]
|
108 |
).launch()
|
|
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
|
|
9 |
from transformers import pipeline, AutoTokenizer
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def load_documents(file_path="study_materials"):
|
12 |
documents = []
|
13 |
for filename in os.listdir(file_path):
|
|
|
25 |
# Load and process documents
|
26 |
documents = load_documents()
|
27 |
if not documents:
|
28 |
+
raise ValueError("❗ No documents found in 'study_materials' folder")
|
29 |
+
|
30 |
+
# Document processing
|
31 |
text_splitter = CharacterTextSplitter(
|
32 |
+
chunk_size=800,
|
33 |
+
chunk_overlap=100,
|
34 |
separator="\n\n"
|
35 |
)
|
36 |
texts = text_splitter.split_documents(documents)
|
37 |
|
38 |
+
# Local embeddings
|
39 |
embeddings = HuggingFaceEmbeddings(
|
40 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
41 |
)
|
42 |
+
|
43 |
+
# Create vector store
|
44 |
db = FAISS.from_documents(texts, embeddings)
|
45 |
|
46 |
+
# Configure local LLM
|
47 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
48 |
+
local_pipe = pipeline(
|
49 |
"text2text-generation",
|
50 |
model="google/flan-t5-base",
|
51 |
tokenizer=tokenizer,
|
52 |
+
max_length=400, # Increased response length
|
53 |
+
temperature=0.4,
|
54 |
+
device=-1 # Force CPU
|
|
|
|
|
55 |
)
|
56 |
|
57 |
+
# LangChain integration
|
58 |
+
llm = HuggingFacePipeline(pipeline=local_pipe)
|
59 |
|
60 |
return RetrievalQA.from_chain_type(
|
61 |
llm=llm,
|
62 |
chain_type="stuff",
|
63 |
+
retriever=db.as_retriever(search_kwargs={"k": 3}),
|
|
|
64 |
return_source_documents=True
|
65 |
)
|
66 |
except Exception as e:
|
67 |
+
raise gr.Error(f"Setup Error: {str(e)}")
|
68 |
|
69 |
# Initialize system
|
70 |
try:
|
71 |
qa = create_qa_system()
|
72 |
except Exception as e:
|
73 |
+
print(f"Startup Failed: {str(e)}")
|
74 |
raise
|
75 |
|
76 |
def ask_question(question, history):
|
77 |
try:
|
78 |
+
result = qa({"query": question})
|
79 |
answer = result["result"]
|
80 |
|
81 |
+
# Enforce minimum answer length
|
82 |
+
min_words = 75
|
83 |
+
if len(answer.split()) < min_words:
|
84 |
+
answer += f"\n\n[Note: This answer is shorter than {min_words} words. Consider rephrasing your question for more details.]"
|
85 |
+
|
86 |
+
# Show sources
|
87 |
sources = list({doc.metadata['source'] for doc in result['source_documents']})
|
88 |
return f"{answer}\n\n📚 Sources: {', '.join(sources)}"
|
89 |
except Exception as e:
|
90 |
return f"Error: {str(e)[:150]}"
|
91 |
|
92 |
+
# Launch interface
|
93 |
gr.ChatInterface(
|
94 |
ask_question,
|
95 |
+
title="Local Study Assistant",
|
96 |
+
description="100% local AI - No APIs required! Upload PDF/TXT files in 'study_materials' folder",
|
97 |
examples=[
|
98 |
+
"Explain the key concepts from Chapter 4 in detail",
|
99 |
+
"What are the three main points made in section 2.3?",
|
100 |
+
"Compare and contrast the theories presented in pages 50-60"
|
101 |
]
|
102 |
).launch()
|