Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
if torch.cuda.is_available(): | |
torch.set_default_device("cuda") | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/phi-2", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
trust_remote_code=True, | |
) | |
def generate(prompt, length): | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
input_token_len = len(inputs.tokens()) | |
outputs = model.generate(**inputs, max_length=length if length >= input_token_len else input_token_len | |
return tokenizer.batch_decode(outputs)[0] | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Text( | |
label="prompt", | |
value="Write a detailed analogy between mathematics and a lighthouse.", | |
), | |
gr.Number(value=100, label="max length", maximum=500), | |
], | |
outputs="text", | |
examples=[ | |
[ | |
"Write a detailed analogy between mathematics and a lighthouse.", | |
75, | |
], | |
[ | |
"Instruct: Write a detailed analogy between mathematics and a lighthouse.\nOutput:", | |
75, | |
], | |
[ | |
"Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?\n\nBob: ", | |
150, | |
], | |
[ | |
'''def print_prime(n): | |
""" | |
Print all primes between 1 and n | |
"""\n''', | |
100, | |
], | |
], | |
title="Microsoft Phi-2", | |
description="Unofficial demo of Microsoft Phi-2, a high performing model with only 2.7B parameters.", | |
) | |
if __name__ == "__main__": | |
demo.launch(show_api=False) | |