Spaces:
Runtime error
Runtime error
File size: 11,949 Bytes
0f13ce7 ef2a26a 0f13ce7 ef2a26a 0f13ce7 ef2a26a 0f13ce7 823472a ef2a26a 0f13ce7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import cv2
import mediapipe as mp
import numpy as np
import math
import gradio as gr
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
Bidirectional, Permute, multiply)
# Load the pose estimation model from Mediapipe
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
# Define the attention block for the LSTM model
def attention_block(inputs, time_steps):
a = Permute((2, 1))(inputs)
a = Dense(time_steps, activation='softmax')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
return output_attention_mul
# Build and load the LSTM model
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
inputs = Input(shape=(sequence_length, num_input_values))
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
attention_mul = attention_block(lstm_out, sequence_length)
attention_mul = Flatten()(attention_mul)
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
x = Dropout(0.5)(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=[inputs], outputs=x)
load_dir = "./models/LSTM_Attention.h5"
model.load_weights(load_dir)
return model
# Define the VideoProcessor class for real-time video processing
class VideoProcessor:
def __init__(self):
# Parameters
self.actions = np.array(['curl', 'press', 'squat'])
self.sequence_length = 30
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
self.threshold = 0.5
self.model = build_model(256)
# Detection variables
self.sequence = []
self.current_action = ''
# Rep counter logic variables
self.curl_counter = 0
self.press_counter = 0
self.squat_counter = 0
self.curl_stage = None
self.press_stage = None
self.squat_stage = None
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
def process_video(self, video_file):
cap = cv2.VideoCapture(video_file.name) # Open the video file
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the frame (replace this with your processing logic)
processed_frame = self.process_frame(rgb_frame)
frames.append(processed_frame) # Append processed frame
cap.release()
# Write processed frames to video
output_filename = "processed_video.mp4"
mediapy.write_video(output_filename, frames, fps=fps)
return output_filename
def process_frame(self, frame, results):
# Process the frame using the `process` function
processed_frame = self.process(frame)
return processed_frame
def process(self, image):
# Pose detection model
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
self.draw_landmarks(image, results)
# Prediction logic
keypoints = self.extract_keypoints(results)
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
self.sequence = self.sequence[-self.sequence_length:]
if len(self.sequence) == self.sequence_length:
res = self.model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
self.current_action = self.actions[np.argmax(res)]
confidence = np.max(res)
# Erase current action variable if no probability is above threshold
if confidence < self.threshold:
self.current_action = ''
# Viz probabilities
image = self.prob_viz(res, image)
# Count reps
landmarks = results.pose_landmarks.landmark
self.count_reps(image, landmarks, mp_pose)
# Display graphical information
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
return image
def draw_landmarks(self, image, results):
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
return image
def extract_keypoints(self, results):
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
return pose
def count_reps(self, image, landmarks, mp_pose):
"""
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
"""
if self.current_action == 'curl':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
# calculate elbow angle
angle = self.calculate_angle(shoulder, elbow, wrist)
# curl counter logic
if angle < 30:
self.curl_stage = "up"
if angle > 140 and self.curl_stage == 'up':
self.curl_stage = "down"
self.curl_counter += 1
self.press_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, angle, elbow)
elif self.current_action == 'press':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
# Calculate elbow angle
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
# Compute distances between joints
shoulder2elbow_dist = abs(math.dist(shoulder, elbow))
shoulder2wrist_dist = abs(math.dist(shoulder, wrist))
# Press counter logic
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
self.press_stage = "up"
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage == 'up'):
self.press_stage = 'down'
self.press_counter += 1
self.curl_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, elbow_angle, elbow)
elif self.current_action == 'squat':
# Get coords
# left side
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
left_hip = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'HIP')
left_knee = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'KNEE')
left_ankle = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ANKLE')
# right side
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'SHOULDER')
right_hip = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'HIP')
right_knee = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'KNEE')
right_ankle = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'ANKLE')
# Calculate knee angles
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
# Calculate hip angles
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
# Squat counter logic
thr = 165
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (
right_hip_angle < thr):
self.squat_stage = "down"
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
right_hip_angle > thr) and (self.squat_stage == 'down'):
self.squat_stage = 'up'
self.squat_counter += 1
self.curl_stage = None
self.press_stage = None
# Viz joint angles
self.viz_joint_angle(image, left_knee_angle, left_knee)
self.viz_joint_angle(image, left_hip_angle, left_hip)
else:
pass
return
def prob_viz(self, res, input_frame):
"""
This function displays the model prediction probability distribution over the set of exercise classes
as a horizontal bar graph
"""
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
return output_frame
def get_coordinates(self, landmarks, mp_pose, side, part):
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+part.upper())
x_coord_val = landmarks[coord.value].x
y_coord_val = landmarks[coord.value].y
return [x_coord_val, y_coord_val]
def calculate_angle(self, a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = math.atan2(c[1]-b[1], c[0]-b[0]) - math.atan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians*180.0/np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def viz_joint_angle(self, image, angle, joint):
cv2.putText(image, str(round(angle, 2)),
tuple(np.multiply(joint, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2, cv2.LINE_AA)
# Define Gradio Interface
def main(video_file):
video_processor = VideoProcessor()
output_video = video_processor.process_video(video_file)
with open(output_video, 'rb') as f:
video_bytes = f.read()
return video_bytes
iface = gr.Interface(
fn=main,
inputs="file",
outputs="video",
title="Real-time Exercise Detection",
description="Upload a video file for real-time exercise detection.",
allow_flagging=False
)
iface.launch() |