Create server.py
Browse files
server.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from fastapi import Response
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import litserve as ls
|
6 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
7 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
8 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
9 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
10 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
11 |
+
|
12 |
+
class FluxLitAPI(ls.LitAPI):
|
13 |
+
def setup(self, device):
|
14 |
+
# Load the model
|
15 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="scheduler", revision="refs/pr/1")
|
16 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
|
17 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
|
18 |
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="text_encoder_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
19 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="tokenizer_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
20 |
+
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
21 |
+
transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
22 |
+
|
23 |
+
# quantize to 8-bit to fit on an L4
|
24 |
+
quantize(transformer, weights=qfloat8)
|
25 |
+
freeze(transformer)
|
26 |
+
quantize(text_encoder_2, weights=qfloat8)
|
27 |
+
freeze(text_encoder_2)
|
28 |
+
|
29 |
+
self.pipe = FluxPipeline(
|
30 |
+
scheduler=scheduler,
|
31 |
+
text_encoder=text_encoder,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
text_encoder_2=None,
|
34 |
+
tokenizer_2=tokenizer_2,
|
35 |
+
vae=vae,
|
36 |
+
transformer=None,
|
37 |
+
)
|
38 |
+
self.pipe.text_encoder_2 = text_encoder_2
|
39 |
+
self.pipe.transformer = transformer
|
40 |
+
self.pipe.enable_model_cpu_offload()
|
41 |
+
|
42 |
+
|
43 |
+
def decode_request(self, request):
|
44 |
+
# Extract prompt from request
|
45 |
+
prompt = request["prompt"]
|
46 |
+
return prompt
|
47 |
+
|
48 |
+
def predict(self, prompt):
|
49 |
+
# Generate image from prompt
|
50 |
+
image = self.pipe(
|
51 |
+
prompt=prompt,
|
52 |
+
width=1024,
|
53 |
+
height=1024,
|
54 |
+
num_inference_steps=4,
|
55 |
+
generator=torch.Generator().manual_seed(int(time.time())),
|
56 |
+
guidance_scale=3.5,
|
57 |
+
).images[0]
|
58 |
+
|
59 |
+
return image
|
60 |
+
|
61 |
+
def encode_response(self, image):
|
62 |
+
buffered = BytesIO()
|
63 |
+
image.save(buffered, format="PNG")
|
64 |
+
return Response(content=buffered.getvalue(), headers={"Content-Type": "image/png"})
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
api = FluxLitAPI()
|
68 |
+
server = ls.LitServer(api, timeout=False)
|
69 |
+
server.run(port=8000)
|