Update server.py
Browse files
server.py
CHANGED
@@ -1,62 +1,12 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
import time
|
5 |
-
import litserve as ls
|
6 |
-
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
7 |
-
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
8 |
-
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
9 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
10 |
|
11 |
-
|
12 |
-
def setup(self, device):
|
13 |
-
# Load the model
|
14 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="scheduler", revision="refs/pr/1")
|
15 |
-
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
|
16 |
-
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
|
17 |
-
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="text_encoder_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
18 |
-
tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="tokenizer_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
19 |
-
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
20 |
-
transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/1")
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
tokenizer=tokenizer,
|
26 |
-
text_encoder_2=None,
|
27 |
-
tokenizer_2=tokenizer_2,
|
28 |
-
vae=vae,
|
29 |
-
transformer=None,
|
30 |
-
)
|
31 |
-
self.pipe.text_encoder_2 = text_encoder_2
|
32 |
-
self.pipe.transformer = transformer
|
33 |
-
self.pipe.enable_model_cpu_offload()
|
34 |
|
35 |
-
|
36 |
-
def decode_request(self, request):
|
37 |
-
# Extract prompt from request
|
38 |
-
prompt = request["prompt"]
|
39 |
-
return prompt
|
40 |
-
|
41 |
-
def predict(self, prompt):
|
42 |
-
# Generate image from prompt
|
43 |
-
image = self.pipe(
|
44 |
-
prompt=prompt,
|
45 |
-
width=1024,
|
46 |
-
height=1024,
|
47 |
-
num_inference_steps=4,
|
48 |
-
generator=torch.Generator().manual_seed(int(time.time())),
|
49 |
-
guidance_scale=3.5,
|
50 |
-
).images[0]
|
51 |
-
|
52 |
-
return image
|
53 |
-
|
54 |
-
def encode_response(self, image):
|
55 |
-
buffered = BytesIO()
|
56 |
-
image.save(buffered, format="PNG")
|
57 |
-
return Response(content=buffered.getvalue(), headers={"Content-Type": "image/png"})
|
58 |
-
|
59 |
if __name__ == "__main__":
|
60 |
-
|
61 |
-
server = ls.LitServer(api, timeout=False)
|
62 |
-
server.run(port=8000)
|
|
|
1 |
+
import os
|
2 |
+
import uvicorn
|
3 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
@app.get("/")
|
8 |
+
def hello():
|
9 |
+
return {"message": "running"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
if __name__ == "__main__":
|
12 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|