Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,23 +19,23 @@ from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
|
|
| 19 |
|
| 20 |
from transformers import SeamlessM4TFeatureExtractor
|
| 21 |
|
| 22 |
-
import whisperx
|
| 23 |
|
| 24 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
| 25 |
|
| 26 |
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
| 27 |
|
| 28 |
-
whisper_model = whisperx.load_model("small", "cuda", compute_type="int8")
|
| 29 |
|
| 30 |
-
@torch.no_grad()
|
| 31 |
-
def get_prompt_text(speech_16k):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
|
| 41 |
def g2p_(text, language):
|
|
@@ -295,8 +295,8 @@ def maskgct_inference(
|
|
| 295 |
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
| 296 |
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
| 297 |
|
| 298 |
-
if prompt_text is None:
|
| 299 |
-
|
| 300 |
|
| 301 |
combine_semantic_code, _ = text2semantic(
|
| 302 |
device,
|
|
@@ -369,7 +369,7 @@ iface = gr.Interface(
|
|
| 369 |
fn=inference,
|
| 370 |
inputs=[
|
| 371 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
| 372 |
-
gr.Textbox(label="Prompt Text
|
| 373 |
gr.Textbox(label="Target Text"),
|
| 374 |
gr.Number(
|
| 375 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|
|
|
|
| 19 |
|
| 20 |
from transformers import SeamlessM4TFeatureExtractor
|
| 21 |
|
| 22 |
+
# import whisperx
|
| 23 |
|
| 24 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
| 25 |
|
| 26 |
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
| 27 |
|
| 28 |
+
# whisper_model = whisperx.load_model("small", "cuda", compute_type="int8")
|
| 29 |
|
| 30 |
+
# @torch.no_grad()
|
| 31 |
+
# def get_prompt_text(speech_16k):
|
| 32 |
+
# asr_result = whisper_model.transcribe(speech_16k)
|
| 33 |
+
# print("asr_result:", asr_result)
|
| 34 |
+
# language = asr_result["language"]
|
| 35 |
+
# #text = asr_result["text"] # whisper asr result
|
| 36 |
+
# text = asr_result["segments"][0]["text"]
|
| 37 |
+
# print("prompt text:", text)
|
| 38 |
+
# return text, language
|
| 39 |
|
| 40 |
|
| 41 |
def g2p_(text, language):
|
|
|
|
| 295 |
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
| 296 |
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
| 297 |
|
| 298 |
+
# if prompt_text is None:
|
| 299 |
+
# prompt_text, language = get_prompt_text(prompt_speech_path)
|
| 300 |
|
| 301 |
combine_semantic_code, _ = text2semantic(
|
| 302 |
device,
|
|
|
|
| 369 |
fn=inference,
|
| 370 |
inputs=[
|
| 371 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
| 372 |
+
gr.Textbox(label="Prompt Text"),
|
| 373 |
gr.Textbox(label="Target Text"),
|
| 374 |
gr.Number(
|
| 375 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|