Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -41,118 +41,123 @@ theme = gr.themes.Monochrome(
|
|
41 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
42 |
)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
|
66 |
-
class CustomModel(nn.Module):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
if CFG.gradient_checkpointing:
|
110 |
-
self.model.
|
111 |
-
self.model = get_peft_model(self.model, lora_config)
|
112 |
-
self.model.print_trainable_parameters()
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
if isinstance(module, nn.Linear):
|
121 |
-
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
|
122 |
-
if module.bias is not None:
|
123 |
-
module.bias.data.zero_()
|
124 |
-
elif isinstance(module, nn.Embedding):
|
125 |
-
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
|
126 |
-
if module.padding_idx is not None:
|
127 |
-
module.weight.data[module.padding_idx].zero_()
|
128 |
-
elif isinstance(module, nn.LayerNorm):
|
129 |
-
module.bias.data.zero_()
|
130 |
-
module.weight.data.fill_(1.0)
|
131 |
-
|
132 |
-
def forward(
|
133 |
-
self,
|
134 |
-
batch
|
135 |
-
):
|
136 |
-
# disable cache if gradient checkpointing is enabled
|
137 |
-
if CFG.gradient_checkpointing:
|
138 |
-
self.model.config.use_cache = False
|
139 |
-
|
140 |
-
self.model.config.pretraining_tp = 1
|
141 |
-
|
142 |
-
output = self.model(
|
143 |
-
input_ids=batch["input_ids"],
|
144 |
-
attention_mask=batch["attention_mask"],
|
145 |
-
)
|
146 |
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
|
|
|
|
154 |
|
155 |
|
|
|
|
|
156 |
### End Load the model
|
157 |
|
158 |
|
@@ -160,7 +165,7 @@ class CustomModel(nn.Module):
|
|
160 |
|
161 |
def do_submit(question, response):
|
162 |
full_text = question + " " + response
|
163 |
-
|
164 |
return "result"
|
165 |
|
166 |
@spaces.GPU
|
@@ -168,7 +173,6 @@ def greet():
|
|
168 |
pass
|
169 |
|
170 |
with gr.Blocks(title=title) as demo: # theme=theme
|
171 |
-
model = CustomModel()
|
172 |
sample_examples = pd.read_csv('sample_examples.csv')
|
173 |
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist()
|
174 |
gr.Markdown(f"## {title}")
|
|
|
41 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
42 |
)
|
43 |
|
44 |
+
def do_inference(full_text):
|
45 |
+
### Load the model
|
46 |
+
class CFG:
|
47 |
+
num_workers = os.cpu_count()
|
48 |
+
llm_backbone = "HuggingFaceH4/zephyr-7b-beta"
|
49 |
+
tokenizer_path = "HuggingFaceH4/zephyr-7b-beta"
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
51 |
+
tokenizer_path, add_prefix_space=False, use_fast=True, trust_remote_code=True, add_eos_token=True
|
52 |
+
)
|
53 |
+
batch_size = 1
|
54 |
+
max_len = 650
|
55 |
+
seed = 42
|
56 |
|
57 |
+
num_labels = 7
|
58 |
|
59 |
+
lora = True
|
60 |
+
lora_r = 4
|
61 |
+
lora_alpha = 16
|
62 |
+
lora_dropout = 0.05
|
63 |
+
lora_target_modules = ""
|
64 |
+
gradient_checkpointing = True
|
65 |
|
66 |
|
67 |
+
class CustomModel(nn.Module):
|
68 |
+
"""
|
69 |
+
Model for causal language modeling problem type.
|
70 |
+
"""
|
71 |
|
72 |
+
def __init__(self):
|
73 |
+
super().__init__()
|
74 |
|
75 |
+
self.backbone_config = AutoConfig.from_pretrained(
|
76 |
+
CFG.llm_backbone, trust_remote_code=True
|
77 |
+
)
|
78 |
|
79 |
+
quantization_config = BitsAndBytesConfig(
|
80 |
+
load_in_4bit=True,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_quant_type="nf4",
|
83 |
+
)
|
84 |
|
85 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
86 |
+
CFG.llm_backbone,
|
87 |
+
config=self.backbone_config,
|
88 |
+
quantization_config=quantization_config,
|
89 |
+
)
|
90 |
|
91 |
+
if CFG.lora:
|
92 |
+
target_modules = []
|
93 |
+
for name, module in self.model.named_modules():
|
94 |
+
if (
|
95 |
+
isinstance(module, (torch.nn.Linear, torch.nn.Conv1d))
|
96 |
+
and "head" not in name
|
97 |
+
):
|
98 |
+
name = name.split(".")[-1]
|
99 |
+
if name not in target_modules:
|
100 |
+
target_modules.append(name)
|
101 |
+
|
102 |
+
lora_config = LoraConfig(
|
103 |
+
r=CFG.lora_r,
|
104 |
+
lora_alpha=CFG.lora_alpha,
|
105 |
+
target_modules=target_modules,
|
106 |
+
lora_dropout=CFG.lora_dropout,
|
107 |
+
bias="none",
|
108 |
+
task_type="CAUSAL_LM",
|
109 |
+
)
|
110 |
+
if CFG.gradient_checkpointing:
|
111 |
+
self.model.enable_input_require_grads()
|
112 |
+
self.model = get_peft_model(self.model, lora_config)
|
113 |
+
self.model.print_trainable_parameters()
|
114 |
+
|
115 |
+
self.classification_head = nn.Linear(
|
116 |
+
self.backbone_config.vocab_size, CFG.num_labels, bias=False
|
117 |
)
|
118 |
+
self._init_weights(self.classification_head)
|
119 |
+
|
120 |
+
def _init_weights(self, module):
|
121 |
+
if isinstance(module, nn.Linear):
|
122 |
+
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
|
123 |
+
if module.bias is not None:
|
124 |
+
module.bias.data.zero_()
|
125 |
+
elif isinstance(module, nn.Embedding):
|
126 |
+
module.weight.data.normal_(mean=0.0, std=self.backbone_config.initializer_range)
|
127 |
+
if module.padding_idx is not None:
|
128 |
+
module.weight.data[module.padding_idx].zero_()
|
129 |
+
elif isinstance(module, nn.LayerNorm):
|
130 |
+
module.bias.data.zero_()
|
131 |
+
module.weight.data.fill_(1.0)
|
132 |
+
|
133 |
+
def forward(
|
134 |
+
self,
|
135 |
+
batch
|
136 |
+
):
|
137 |
+
# disable cache if gradient checkpointing is enabled
|
138 |
if CFG.gradient_checkpointing:
|
139 |
+
self.model.config.use_cache = False
|
|
|
|
|
140 |
|
141 |
+
self.model.config.pretraining_tp = 1
|
142 |
+
|
143 |
+
output = self.model(
|
144 |
+
input_ids=batch["input_ids"],
|
145 |
+
attention_mask=batch["attention_mask"],
|
146 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
output.logits = self.classification_head(output[0][:, -1].float())
|
149 |
|
150 |
+
# enable cache again if gradient checkpointing is enabled
|
151 |
+
if CFG.gradient_checkpointing:
|
152 |
+
self.model.config.use_cache = True
|
153 |
|
154 |
+
return output.logits
|
155 |
+
|
156 |
+
model = CustomModel()
|
157 |
|
158 |
|
159 |
+
return "result"
|
160 |
+
|
161 |
### End Load the model
|
162 |
|
163 |
|
|
|
165 |
|
166 |
def do_submit(question, response):
|
167 |
full_text = question + " " + response
|
168 |
+
result = do_inference(full_text)
|
169 |
return "result"
|
170 |
|
171 |
@spaces.GPU
|
|
|
173 |
pass
|
174 |
|
175 |
with gr.Blocks(title=title) as demo: # theme=theme
|
|
|
176 |
sample_examples = pd.read_csv('sample_examples.csv')
|
177 |
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist()
|
178 |
gr.Markdown(f"## {title}")
|