# voice/speech_to_text.py import wave import vosk # import pyaudio import io import json from vosk import Model, KaldiRecognizer class SpeechToText: def __init__(self, model_path): self.model = vosk.Model(model_path) self.sample_rate = 16000 def listen(self, duration=10, sample_rate=16000): p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=sample_rate, input=True, frames_per_buffer=1024) stream.start_stream() print("Listening...") frames = [] for _ in range(0, int(sample_rate / 1024 * duration)): data = stream.read(1024) frames.append(data) stream.stop_stream() stream.close() p.terminate() # Convert frames to WAV format wf = wave.open(io.BytesIO(), 'wb') wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(sample_rate) wf.writeframes(b''.join(frames)) wf.close() # Transcribe wf.seek(0) rec = vosk.KaldiRecognizer(self.model, sample_rate) while True: data = wf.readframes(4000) if len(data) == 0: break rec.AcceptWaveform(data) result = json.loads(rec.FinalResult()) return result.get("text", "") def transcribe_audio(self, audio_file): """ Process an audio file and convert speech to text using Vosk. Args: audio_file (str): Path to the audio file (WAV format). Returns: str: The recognized text, or None if recognition fails. """ try: wf = wave.open(audio_file, "rb") if wf.getnchannels() != 1 or wf.getsampwidth() != 2 or wf.getframerate() not in [8000, 16000, 32000, 44100, 48000]: print("Audio file must be WAV format, mono, 16-bit, with a supported sample rate.") return None rec = KaldiRecognizer(self.model, wf.getframerate()) print("Processing audio with Vosk...") while True: data = wf.readframes(4000) if len(data) == 0: break if rec.AcceptWaveform(data): result = json.loads(rec.Result()) return result.get("text", "") final_result = json.loads(rec.FinalResult()) text = final_result.get("text", "") print(f"Recognized text: {text}") return text except Exception as e: print(f"Error processing audio: {e}") return None