File size: 2,391 Bytes
4389dd9
4f390ee
4389dd9
 
d0bce20
 
 
 
 
4389dd9
 
 
d0bce20
4f390ee
4389dd9
 
 
 
4f390ee
4389dd9
 
c836a14
4f390ee
 
c836a14
c5918f8
 
c836a14
4f390ee
 
 
 
4389dd9
 
 
4f390ee
c836a14
d0bce20
c5918f8
 
 
7187b23
c836a14
4f390ee
 
 
 
 
 
d0bce20
4f390ee
5e96bb9
4f390ee
4389dd9
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
from transformers import pipeline

playground = gr.Blocks()
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")

def launch_image_pipe(input):
    out = image_pipe(input)
    return out[0]['generated_text']

def create_playground_header():
    gr.Markdown("""
                # 🤗 Hugging Face Labs
                **Explore different LLM on Hugging Face platform. Just play and enjoy**
                """)

def create_playground_footer():
    gr.Markdown("""
                **To Learn More about 🤗 Hugging Face, [Click Here](https://huggingface.co/docs)**
                """)

def create_tabs_header(topic, descriptions):
    with gr.Row():
        with gr.Column(scale=4):
            gr.Markdown(f"## {topic}")
            for description in descriptions:
                gr.Markdown(f"## {description}")

        with gr.Column(scale=1):
            test_pipeline_button = gr.Button(value="Process")
        return test_pipeline_button

with playground:
    create_playground_header()
    with gr.Tabs():
        with gr.TabItem("Image"):
            
            topic = "Image Captioning"
            descriptions = ["Image-to-Text",
                            "model='Salesforce/blip-image-captioning-base'",
                            "[https://huggingface.co/Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base)"]
            image_pipeline_button = create_tabs_header(topic, descriptions)
            
            with gr.Row(visible=True) as use_pipeline:
                with gr.Column():
                    img = gr.Image(type='pil')
                with gr.Column():
                    generated_textbox = gr.Textbox(lines=2, placeholder="", label="Generated Text")
                    
            image_pipeline_button.click(launch_image_pipe,
                                        inputs=[img],
                                        outputs=[generated_textbox])
            
        with gr.TabItem("Text"):
            gr.Markdown("""
                        > Text Summarization and Translation
                        """)
        
        with gr.TabItem("Name Entity"):
            gr.Markdown("""
                        > Name Entity Recognition
                        """)
            
    create_playground_footer()

playground.launch(share=True)