File size: 7,074 Bytes
d1da800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import streamlit as st
import os
import glob
import sys

# Add the parent directory to the Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import the login component
from app.components.login import login

# Page configuration
st.set_page_config(
    page_title="Data Science Course App",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
def load_css():
    try:
        with open('assets/style.css') as f:
            st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
    except FileNotFoundError:
        # Fallback for Streamlit Cloud deployment
        st.markdown("""
        <style>
        /* Main title styling */
        .main .block-container h1 {
            color: #2c3e50;
            font-size: 2.5rem;
            margin-bottom: 1rem;
        }
        
        /* Subtitle styling */
        .main .block-container h2 {
            color: #34495e;
            font-size: 1.8rem;
            margin-top: 2rem;
            margin-bottom: 1rem;
        }
        
        /* Sidebar styling */
        .sidebar .sidebar-content {
            background-color: #f8f9fa;
        }
        
        /* Button styling */
        .stButton>button {
            width: 100%;
            border-radius: 5px;
            height: 3em;
            margin: 0.5em 0;
            background-color: #3498db;
            color: white;
            border: none;
        }
        
        .stButton>button:hover {
            background-color: #2980b9;
        }
        
        /* Progress bar styling */
        .stProgress > div > div {
            background-color: #2ecc71;
        }
        
        /* Info box styling */
        .stAlert {
            border-radius: 5px;
            padding: 1rem;
            margin: 1rem 0;
        }
        
        /* Code block styling */
        .stCodeBlock {
            background-color: #f8f9fa;
            border-radius: 5px;
            padding: 1rem;
            margin: 1rem 0;
        }
        </style>
        """, unsafe_allow_html=True)

# Initialize session state
if 'current_week' not in st.session_state:
    st.session_state.current_week = 1
if 'logged_in' not in st.session_state:
    st.session_state.logged_in = False

# Get class content
def get_class_content(week_number):
    # Try different possible paths for class files
    possible_paths = [
        f"data_science_class_files/class_{week_number}",  # Local development
        f"app/data_science_class_files/class_{week_number}",  # Alternative local path
        f"class_{week_number}",  # Streamlit Cloud deployment
    ]
    
    for class_dir in possible_paths:
        if os.path.exists(class_dir):
            # Get all files in the class directory
            files = glob.glob(f"{class_dir}/*")
            return {
                'directory': class_dir,
                'files': [os.path.basename(f) for f in files]
            }
    
    return None

# Sidebar navigation
def sidebar_navigation():
    with st.sidebar:
        st.title("Course Navigation")
        
        # Show username if logged in
        if st.session_state.logged_in:
            st.write(f"Welcome, {st.session_state.username}!")
            
            # Logout button
            if st.button("Logout"):
                st.session_state.logged_in = False
                st.session_state.username = None
                st.rerun()
        
        st.markdown("---")
        st.subheader("Course Progress")
        progress = st.progress(st.session_state.current_week / 10)
        st.write(f"Week {st.session_state.current_week} of 10")
        
        st.markdown("---")
        st.subheader("Quick Links")
        for week in range(1, 11):
            if st.button(f"Week {week}", key=f"week_{week}"):
                st.session_state.current_week = week
                st.rerun()

# Main content
def main():
    # Check if user is logged in
    if not st.session_state.logged_in:
        # Show login page
        login()
        return
    
    # User is logged in, show course content
    st.title("Data Science Research Paper Course")
    
    # Welcome message for first-time visitors
    if st.session_state.current_week == 1:
        st.markdown("""
        ## Welcome to the Data Science Research Paper Course! πŸ“š
        
        This 10-week course will guide you through the process of creating a machine learning research paper.
        Each week, you'll learn new concepts and complete tasks that build upon each other.
        
        ### Getting Started
        1. Use the sidebar to navigate between weeks
        2. Complete the weekly tasks and assignments
        3. Track your progress using the progress bar
        4. Submit your work for feedback
        
        ### Course Overview
        - Week 1: Research Topic Selection and Literature Review
        - Week 2: Data Collection and Preprocessing
        - Week 3: Exploratory Data Analysis
        - Week 4: Feature Engineering
        - Week 5: Model Selection and Baseline
        - Week 6: Model Training and Optimization
        - Week 7: Model Evaluation
        - Week 8: Results Analysis
        - Week 9: Paper Writing
        - Week 10: Final Review and Submission
        """)
    
    # Display current week's content
    st.markdown(f"## Week {st.session_state.current_week}")
    
    # Get class content
    class_content = get_class_content(st.session_state.current_week)
    
    if class_content:
        st.subheader("Class Materials")
        
        # Display files in the class directory
        for file in class_content['files']:
            file_path = os.path.join(class_content['directory'], file)
            
            # Handle different file types
            if file.endswith('.py'):
                try:
                    with open(file_path, 'r') as f:
                        st.code(f.read(), language='python')
                except Exception as e:
                    st.error(f"Error reading file {file}: {str(e)}")
            elif file.endswith('.md'):
                try:
                    with open(file_path, 'r') as f:
                        st.markdown(f.read())
                except Exception as e:
                    st.error(f"Error reading file {file}: {str(e)}")
            elif file.endswith(('.pptx', '.pdf', '.doc', '.docx')):
                try:
                    with open(file_path, 'rb') as f:
                        st.download_button(
                            label=f"Download {file}",
                            data=f.read(),
                            file_name=file,
                            mime='application/octet-stream'
                        )
                except Exception as e:
                    st.error(f"Error reading file {file}: {str(e)}")
            else:
                st.write(f"- {file}")
    else:
        st.info("Content for this week is being prepared. Check back soon!")

if __name__ == "__main__":
    load_css()
    sidebar_navigation()
    main()