File size: 27,935 Bytes
63732ac
 
 
 
 
 
 
 
46e47b6
 
 
 
 
 
63732ac
 
 
 
 
46e47b6
 
 
 
63732ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46e47b6
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
 
46e47b6
 
63732ac
46e47b6
 
 
63732ac
46e47b6
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
 
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
 
 
 
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
63732ac
 
46e47b6
 
63732ac
46e47b6
 
 
63732ac
46e47b6
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
63732ac
46e47b6
 
 
63732ac
46e47b6
 
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
 
 
 
 
 
63732ac
 
46e47b6
 
 
 
63732ac
 
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
63732ac
46e47b6
 
63732ac
46e47b6
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
 
 
 
63732ac
 
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
 
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
46e47b6
 
63732ac
46e47b6
 
 
 
 
 
63732ac
46e47b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63732ac
 
46e47b6
 
 
 
 
 
 
 
 
 
 
63732ac
 
 
 
 
46e47b6
 
63732ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.cluster import KMeans
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
from statsmodels.datasets import get_rdataset
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster

# Set up the style for all plots
plt.style.use('default')
sns.set_theme(style="whitegrid", palette="husl")

def load_arrests_data():
    """Load and return the US Arrests dataset"""
    USArrests = get_rdataset('USArrests').data
    return USArrests

def create_categorical_plot(df, column, target='Survived'):
    """Create an interactive plot for categorical variables"""
    fig = px.bar(
        df.groupby(column)[target].mean().reset_index(),
        x=column,
        y=target,
        title=f'Survival Rate by {column}',
        labels={target: 'Survival Rate', column: column},
        color=target,
        color_continuous_scale='RdBu'
    )
    fig.update_layout(
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    return fig

def create_numeric_plot(df, column, target='Survived'):
    """Create an interactive plot for numeric variables"""
    fig = px.box(
        df,
        x=target,
        y=column,
        title=f'{column} Distribution by Survival',
        labels={target: 'Survived', column: column},
        color=target,
        color_discrete_sequence=px.colors.qualitative.Set1
    )
    fig.update_layout(
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    return fig

def show():
    st.title("Week 7: Clustering Lab - State Crime Pattern Analysis")
    
    # Code Example: Loading and Basic Data Exploration
    with st.expander("Code Example: Loading and Exploring Data"):
        st.code("""
# Load the data
from statsmodels.datasets import get_rdataset
USArrests = get_rdataset('USArrests').data

# Basic data exploration
print("Dataset shape:", USArrests.shape)
print("\\nVariables:", USArrests.columns.tolist())
print("\\nFirst 5 states:")
print(USArrests.head())

# Basic statistics
print("\\nData Summary:")
print(USArrests.describe())
        """, language="python")
    
    # Introduction Section with Learning Objectives
    st.header("Learning Objectives")
    st.markdown("""
    In this week, you'll master:
    1. **Unsupervised Learning**: Discover hidden patterns in crime data without predefined categories
    2. **K-Means Clustering**: Learn to divide states into distinct safety profiles
    3. **Hierarchical Clustering**: Create a "family tree" of state crime patterns
    4. **Data Preprocessing**: Understand why scaling is crucial for fair comparisons
    """)
    
    # Interactive Overview
    st.header("Lab Overview")
    st.write("""
    Welcome to your hands-on clustering lab! You'll be working as a policy analyst for the Department of Justice, 
    analyzing crime patterns across US states. Your mission: discover hidden safety profiles that could inform 
    federal resource allocation and crime prevention strategies.
    """)
    
    # Load Data
    st.header("Exercise 1: Data Detective Work")
    st.write("Let's start by understanding our dataset - the US Arrests data.")
    
    df = load_arrests_data()
    
    # Code Example: Data Visualization
    with st.expander("Code Example: Creating Visualizations"):
        st.code("""
# Create correlation heatmap
import plotly.express as px
fig = px.imshow(df.corr(), 
                labels=dict(color="Correlation"),
                color_continuous_scale="RdBu")
fig.show()

# Create box plots
fig = px.box(df, title="Data Distribution")
fig.show()
        """, language="python")
    
    # Interactive Data Exploration
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Dataset Overview")
        st.write(f"Number of states: {len(df)}")
        st.write(f"Number of variables: {len(df.columns)}")
        st.write("\nVariables:", df.columns.tolist())
        
        # Interactive data summary
        st.subheader("Data Summary")
        summary = df.describe()
        st.dataframe(summary)
    
    with col2:
        st.subheader("First 5 States")
        st.dataframe(df.head())
        
        # Interactive correlation heatmap
        st.subheader("Correlation Heatmap")
        fig = px.imshow(df.corr(), 
                       labels=dict(color="Correlation"),
                       color_continuous_scale="RdBu")
        st.plotly_chart(fig)
    
    # Exercise 2: Scaling Challenge
    st.header("Exercise 2: The Scaling Challenge")
    
    # Code Example: Data Scaling
    with st.expander("Code Example: Scaling Data"):
        st.code("""
# Import StandardScaler
from sklearn.preprocessing import StandardScaler

# Create and fit the scaler
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)

# Convert back to DataFrame
df_scaled = pd.DataFrame(df_scaled, 
                        columns=df.columns, 
                        index=df.index)

# Compare original vs scaled data
print("Original data ranges:")
print(df.describe())
print("\\nScaled data ranges:")
print(df_scaled.describe())
        """, language="python")
    
    # Explanation of scaling
    st.markdown("""
    ### Why Do We Need Scaling?
    
    In our crime data, we have variables measured in very different scales:
    - Murder rates: typically 0-20 per 100,000
    - Assault rates: typically 50-350 per 100,000
    - Urban population: 0-100 percentage
    - Rape rates: typically 0-50 per 100,000
    
    Without scaling, variables with larger numbers (like Assault) would dominate our analysis, 
    making smaller-scale variables (like Murder) less influential. This would be like comparing 
    dollars to cents - the cents would seem insignificant even if they were important!
    """)
    
    # Show original data ranges
    st.subheader("Original Data Ranges")
    col1, col2 = st.columns(2)
    
    with col1:
        # Create a bar chart of variances
        fig_var = px.bar(
            x=df.columns,
            y=df.var(),
            title="Variance of Each Variable (Before Scaling)",
            labels={'x': 'Crime Variables', 'y': 'Variance'},
            color=df.var(),
            color_continuous_scale='Viridis'
        )
        st.plotly_chart(fig_var)
        
        st.write("""
        Notice how Assault has a much larger variance (6,945) compared to Murder (19).
        This means Assault would dominate our clustering if we didn't scale the data!
        """)
    
    with col2:
        # Create box plots of original data
        fig_box = px.box(df, title="Original Data Distribution")
        fig_box.update_layout(
            xaxis_title="Crime Variables",
            yaxis_title="Rate per 100,000"
        )
        st.plotly_chart(fig_box)
    
    # Explain standardization
    st.markdown("""
    ### What is Standardization?
    
    Standardization (also called Z-score normalization) transforms our data so that:
    1. Each variable has a mean of 0
    2. Each variable has a standard deviation of 1
    
    The formula is: z = (x - μ) / σ
    - x is the original value
    - μ is the mean of the variable
    - σ is the standard deviation of the variable
    """)
    
    # Scale the data
    scaler = StandardScaler()
    df_scaled = scaler.fit_transform(df)
    df_scaled = pd.DataFrame(df_scaled, columns=df.columns, index=df.index)
    
    # Show scaled data
    st.subheader("After Scaling")
    
    # Create box plots of scaled data
    fig_scaled = px.box(df_scaled, title="Scaled Data Distribution")
    fig_scaled.update_layout(
        xaxis_title="Crime Variables",
        yaxis_title="Standardized Values"
    )
    st.plotly_chart(fig_scaled)
    
    st.write("""
    After scaling, all variables are on the same scale:
    - Mean = 0
    - Standard Deviation = 1
    - Values typically range from -3 to +3
    """)
    
    # Show before/after comparison for a few states
    st.write("### Before vs After Scaling (Sample States)")
    comparison_df = pd.DataFrame({
        'State': df.index[:5],
        'Original Murder': df['Murder'][:5],
        'Scaled Murder': df_scaled['Murder'][:5],
        'Original Assault': df['Assault'][:5],
        'Scaled Assault': df_scaled['Assault'][:5]
    })
    st.dataframe(comparison_df)
    
    st.write("""
    Notice how the relative differences between states are preserved,
    but now all variables contribute equally to our analysis!
    """)
    
    # Why scaling matters for clustering
    st.markdown("""
    ### Why Scaling Matters for Clustering
    
    In clustering, we measure distances between data points. Without scaling:
    - States might be grouped together just because they have similar assault rates
    - Important differences in murder rates might be ignored
    
    With scaling:
    - All variables contribute equally to the distance calculations
    - We can find true patterns in the data, not just patterns in the largest numbers
    """)
    
    # Exercise 3: Finding Optimal Clusters
    st.header("Exercise 3: Finding the Right Number of Groups")
    
    # Code Example: Elbow Method
    with st.expander("Code Example: Finding Optimal K"):
        st.code("""
# Calculate inertias for different K values
inertias = []
K_values = range(1, 11)

for k in K_values:
    kmeans = KMeans(n_clusters=k, random_state=42, n_init=20)
    kmeans.fit(df_scaled)
    inertias.append(kmeans.inertia_)

# Create elbow plot
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
    x=list(K_values),
    y=inertias,
    mode='lines+markers',
    name='Inertia'
))
fig.update_layout(
    title='Finding the Optimal Number of Clusters',
    xaxis_title='Number of Clusters (K)',
    yaxis_title='Within-Cluster Sum of Squares'
)
fig.show()
        """, language="python")
    
    st.markdown("""
    ### The Elbow Method Explained
    
    The elbow method helps us find the optimal number of clusters (K) by looking at how the "within-cluster sum of squares" 
    (WCSS) changes as we increase the number of clusters. Think of it like this:
    
    - **What is WCSS?** It's a measure of how spread out the points are within each cluster
    - **Lower WCSS** means points are closer to their cluster center (better clustering)
    - **Higher WCSS** means points are more spread out from their cluster center
    
    As we increase K:
    1. WCSS always decreases (more clusters = tighter groups)
    2. The rate of decrease slows down
    3. We look for the "elbow" - where adding more clusters doesn't help much anymore
    """)
    
    # Calculate inertias for different K values
    inertias = []
    K_values = range(1, 11)
    
    for k in K_values:
        kmeans = KMeans(n_clusters=k, random_state=42, n_init=20)
        kmeans.fit(df_scaled)
        inertias.append(kmeans.inertia_)
    
    # Create interactive elbow plot
    fig_elbow = go.Figure()
    fig_elbow.add_trace(go.Scatter(
        x=list(K_values),
        y=inertias,
        mode='lines+markers',
        name='Inertia'
    ))
    fig_elbow.update_layout(
        title='Finding the Optimal Number of State Crime Profiles',
        xaxis_title='Number of Clusters (K)',
        yaxis_title='Within-Cluster Sum of Squares',
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_elbow)
    
    # Interpretation guide
    st.markdown("""
    ### How to Interpret the Elbow Plot
    
    Look at the plot above and ask yourself:
    1. **Where is the "elbow"?** 
       - The point where the line starts to level off
       - Adding more clusters doesn't give much improvement
       - In our case, it's around K=4
    
    2. **What do the numbers mean?**
       - K=1: All states in one group (not useful)
       - K=2: Basic high/low crime split
       - K=3: More nuanced grouping
       - K=4: Our "elbow" - good balance of detail and simplicity
       - K>4: Diminishing returns - more complexity without much benefit
    
    3. **Why not just use more clusters?**
       - More clusters = more complex to interpret
       - Small clusters might not be meaningful
       - Goal is to find the simplest model that captures the main patterns
    """)
    
    # Show the actual values
    st.write("### WCSS Values for Each K")
    wcss_df = pd.DataFrame({
        'Number of Clusters (K)': K_values,
        'Within-Cluster Sum of Squares': inertias,
        'Improvement from Previous K': [0] + [inertias[i-1] - inertias[i] for i in range(1, len(inertias))]
    })
    st.dataframe(wcss_df)
    
    st.markdown("""
    ### Making the Decision
    
    Based on our elbow plot and the numbers above:
    1. The biggest improvements happen from K=1 to K=4
    2. After K=4, the improvements get much smaller
    3. K=4 gives us a good balance of:
       - Capturing meaningful patterns
       - Keeping the model simple enough to interpret
       - Having enough states in each cluster to be meaningful
    
    This is why we'll use K=4 for our clustering analysis!
    """)
    
    # Exercise 4: K-Means Clustering
    st.header("Exercise 4: K-Means State Profiling")
    
    # Code Example: K-Means Clustering
    with st.expander("Code Example: K-Means Implementation"):
        st.code("""
# Perform K-means clustering
from sklearn.cluster import KMeans

# Create and fit the model
kmeans = KMeans(
    n_clusters=4,        # Number of clusters
    random_state=42,     # For reproducibility
    n_init=20           # Number of times to run with different centroids
)
cluster_labels = kmeans.fit_predict(df_scaled)

# Add cluster labels to original data
df_clustered = df.copy()
df_clustered['Cluster'] = cluster_labels

# Visualize the clusters
import plotly.express as px
fig = px.scatter(df_clustered, 
                x='Murder', 
                y='Assault',
                color='Cluster',
                hover_data=['UrbanPop', 'Rape'],
                title='State Crime Profiles')
fig.show()

# Show cluster centers
centers_df = pd.DataFrame(
    kmeans.cluster_centers_,
    columns=df.columns
)
print("Cluster Centers:")
print(centers_df)
        """, language="python")
    
    st.markdown("""
    ### What is K-Means Clustering?
    
    K-means is an unsupervised learning algorithm that groups similar data points together. Think of it like organizing 
    students into study groups based on their interests:
    
    1. **Initialization**: 
       - We randomly place K "centers" (centroids) in our data space
       - Each center represents the "average" of its cluster
       - In our case, each center represents a typical crime profile
    
    2. **Assignment**:
       - Each state is assigned to its nearest center
       - "Nearest" is measured by Euclidean distance
       - States with similar crime patterns end up in the same cluster
    
    3. **Update**:
       - Centers move to the average position of their assigned states
       - This process repeats until centers stop moving
       - The algorithm converges when states are optimally grouped
    """)
    
    # Visualize the process
    st.subheader("K-Means in Action")
    st.write("""
    Let's see how K-means works with our state crime data. We'll use K=4 clusters to find distinct crime profiles.
    """)
    
    # Let user choose number of clusters
    k = st.slider("Choose number of clusters (K)", 2, 6, 4)
    
    # Perform K-means clustering
    kmeans = KMeans(n_clusters=k, random_state=42, n_init=20)
    cluster_labels = kmeans.fit_predict(df_scaled)
    
    # Add cluster labels to original data
    df_clustered = df.copy()
    df_clustered['Cluster'] = cluster_labels
    
    # Create interactive scatter plot
    fig = px.scatter(df_clustered, 
                    x='Murder', 
                    y='Assault',
                    color='Cluster',
                    hover_data=['UrbanPop', 'Rape'],
                    title='State Crime Profiles')
    st.plotly_chart(fig)
    
    # Explain hyperparameters
    st.markdown("""
    ### K-Means Hyperparameters Explained
    
    1. **n_clusters (K)**
       - The number of groups we want to create
       - We chose K=4 based on the elbow method
       - Each cluster represents a distinct crime profile
    
    2. **random_state**
       - Controls the random initialization of centroids
       - Setting it to 42 ensures reproducible results
       - Different values might give slightly different clusters
    
    3. **n_init**
       - Number of times to run the algorithm with different initial centroids
       - We use 20 to find the best possible clustering
       - Higher values give more reliable results but take longer
    
    4. **max_iter**
       - Maximum number of iterations for each run
       - Default is 300, which is usually enough
       - Algorithm stops earlier if it converges
    
    5. **algorithm**
       - 'auto': Automatically chooses the best algorithm
       - 'full': Traditional K-means
       - 'elkan': More efficient for well-separated clusters
    """)
    
    # Show cluster centers
    st.subheader("Cluster Centers (Typical Crime Profiles)")
    centers_df = pd.DataFrame(
        kmeans.cluster_centers_,
        columns=df.columns
    )
    st.dataframe(centers_df)
    
    st.write("""
    Each row represents the "average" crime profile for that cluster. For example:
    - High values in Murder and Assault indicate a high-crime cluster
    - High UrbanPop with low crime rates might indicate urban safety
    - Low values across all metrics might indicate rural safety
    """)
    
    # Display cluster analysis
    st.subheader("State Crime Profiles Analysis")
    
    for cluster_num in range(k):
        cluster_states = df_clustered[df_clustered['Cluster'] == cluster_num]
        st.write(f"\n**CLUSTER {cluster_num}: {len(cluster_states)} states**")
        st.write("States:", ", ".join(cluster_states.index.tolist()))
        st.write("Average characteristics:")
        avg_profile = cluster_states[['Murder', 'Assault', 'UrbanPop', 'Rape']].mean()
        st.write(avg_profile)
    
    # Explain the results
    st.markdown("""
    ### Interpreting the Results
    
    Each cluster represents a distinct crime profile:
    1. **Cluster Characteristics**
       - Look at the average values for each crime type
       - Compare urban population percentages
       - Identify the defining features of each cluster
    
    2. **State Groupings**
       - States in the same cluster have similar crime patterns
       - Geographic proximity doesn't always mean similar profiles
       - Some states might surprise you with their cluster membership
    
    3. **Policy Implications**
       - Clusters help identify states with similar challenges
       - Can guide resource allocation and policy development
       - Enables targeted interventions based on crime profiles
    """)
    
    # Exercise 5: Hierarchical Clustering
    st.header("Exercise 5: Hierarchical Clustering Exploration")
    
    # Code Example: Hierarchical Clustering
    with st.expander("Code Example: Hierarchical Clustering"):
        st.code("""
# Create hierarchical clustering
from scipy.cluster.hierarchy import linkage, dendrogram

# Create linkage matrix
linkage_matrix = linkage(df_scaled, method='complete')

# Plot dendrogram
import plotly.graph_objects as go
dendro = dendrogram(linkage_matrix, labels=df.index.tolist(), no_plot=True)

fig = go.Figure()
fig.add_trace(go.Scatter(
    x=dendro['icoord'],
    y=dendro['dcoord'],
    mode='lines',
    line=dict(color='white')
))
fig.update_layout(
    title='State Crime Pattern Family Tree',
    xaxis_title='States',
    yaxis_title='Distance Between Groups'
)
fig.show()

# Cut the tree to get clusters
from scipy.cluster.hierarchy import fcluster
hierarchical_labels = fcluster(linkage_matrix, k, criterion='maxclust') - 1
        """, language="python")
    
    st.markdown("""
    ### What is Hierarchical Clustering?
    
    Hierarchical clustering creates a tree-like structure (dendrogram) that shows how data points are related at different levels. 
    Think of it like building a family tree for states based on their crime patterns:
    
    1. **Bottom-Up Approach (Agglomerative)**:
       - Start with each state as its own cluster
       - Find the two closest states and merge them
       - Continue merging until all states are in one cluster
       - Creates a complete hierarchy of relationships
    
    2. **Distance Measurement**:
       - Complete Linkage: Uses the maximum distance between states
       - Average Linkage: Uses the average distance between states
       - Single Linkage: Uses the minimum distance between states
       - We use complete linkage for more distinct clusters
    """)
    
    # Create hierarchical clustering
    linkage_matrix = linkage(df_scaled, method='complete')
    
    # Create interactive dendrogram
    fig_dendro = go.Figure()
    dendro = dendrogram(linkage_matrix, labels=df.index.tolist(), no_plot=True)
    
    fig_dendro.add_trace(go.Scatter(
        x=dendro['icoord'],
        y=dendro['dcoord'],
        mode='lines',
        line=dict(color='white')
    ))
    
    fig_dendro.update_layout(
        title='State Crime Pattern Family Tree',
        xaxis_title='States',
        yaxis_title='Distance Between Groups',
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    st.plotly_chart(fig_dendro)
    
    # Explain how to read the dendrogram
    st.markdown("""
    ### How to Read the Dendrogram
    
    1. **Height of Connections**:
       - Higher connections = more different groups
       - Lower connections = more similar groups
       - The height shows how different two groups are
    
    2. **Cutting the Tree**:
       - Draw a horizontal line to create clusters
       - Where you cut determines the number of clusters
       - We'll cut at a height that gives us 4 clusters (like K-means)
    """)
    
    # Cut the tree to get clusters
    hierarchical_labels = fcluster(linkage_matrix, k, criterion='maxclust') - 1
    
    # Compare K-means and Hierarchical Clustering
    st.header("Comparing K-Means and Hierarchical Clustering")
    
    # Create side-by-side comparison
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("K-Means Clustering")
        fig_kmeans = px.scatter(df_clustered, 
                              x='Murder', 
                              y='Assault',
                              color='Cluster',
                              title='K-Means Clustering (K=4)',
                              hover_data=['UrbanPop', 'Rape'])
        st.plotly_chart(fig_kmeans)
        
        st.markdown("""
        **K-Means Characteristics**:
        - Requires specifying number of clusters upfront
        - Creates clusters of similar size
        - Works well with spherical clusters
        - Faster for large datasets
        - Can be sensitive to outliers
        """)
    
    with col2:
        st.subheader("Hierarchical Clustering")
        df_hierarchical = df.copy()
        df_hierarchical['Cluster'] = hierarchical_labels
        fig_hierarchical = px.scatter(df_hierarchical, 
                                    x='Murder', 
                                    y='Assault',
                                    color='Cluster',
                                    title='Hierarchical Clustering (4 clusters)',
                                    hover_data=['UrbanPop', 'Rape'])
        st.plotly_chart(fig_hierarchical)
        
        st.markdown("""
        **Hierarchical Clustering Characteristics**:
        - Creates a complete hierarchy of clusters
        - Can handle non-spherical clusters
        - More flexible in cluster shapes
        - Slower for large datasets
        - Less sensitive to outliers
        """)
    
    # Show agreement between methods
    st.subheader("Comparing the Results")
    
    # Create comparison dataframe
    comparison_df = pd.DataFrame({
        'State': df.index,
        'K-Means Cluster': cluster_labels,
        'Hierarchical Cluster': hierarchical_labels
    })
    
    # Count agreements
    agreements = sum(comparison_df['K-Means Cluster'] == comparison_df['Hierarchical Cluster'])
    agreement_percentage = (agreements / len(comparison_df)) * 100
    
    st.write(f"Methods agreed on {agreements} out of {len(comparison_df)} states ({agreement_percentage:.1f}%)")
    
    # Show states where methods disagree
    disagreements = comparison_df[comparison_df['K-Means Cluster'] != comparison_df['Hierarchical Cluster']]
    if not disagreements.empty:
        st.write("States where the methods disagreed:")
        st.dataframe(disagreements)
    
    st.markdown("""
    ### When to Use Each Method
    
    1. **Use K-Means when**:
       - You know the number of clusters
       - Your data has spherical clusters
       - You need fast computation
       - You want clusters of similar size
    
    2. **Use Hierarchical Clustering when**:
       - You don't know the number of clusters
       - You want to explore the hierarchy
       - Your clusters might be non-spherical
       - You need to handle outliers carefully
    
    In our case, both methods found similar patterns, suggesting our clusters are robust!
    """)
    
    # Exercise 6: Policy Brief
    st.header("Exercise 6: Policy Brief Creation")
    
    # Code Example: Creating Final Visualizations
    with st.expander("Code Example: Creating Policy Brief Visualizations"):
        st.code("""
# Create a comprehensive visualization
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Create subplots
fig = make_subplots(rows=2, cols=2)

# Plot 1: Murder vs Assault by cluster
for i in range(k):
    cluster_data = df_clustered[df_clustered['Cluster'] == i]
    fig.add_trace(
        go.Scatter(
            x=cluster_data['Murder'],
            y=cluster_data['Assault'],
            mode='markers',
            name=f'Cluster {i}'
        ),
        row=1, col=1
    )

# Plot 2: Urban Population vs Rape by cluster
for i in range(k):
    cluster_data = df_clustered[df_clustered['Cluster'] == i]
    fig.add_trace(
        go.Scatter(
            x=cluster_data['UrbanPop'],
            y=cluster_data['Rape'],
            mode='markers',
            name=f'Cluster {i}'
        ),
        row=1, col=2
    )

# Update layout
fig.update_layout(
    title_text="State Crime Profile Analysis",
    showlegend=True
)
fig.show()
        """, language="python")
    
    st.write("""
    Based on our analysis, here's a summary of findings and recommendations:
    
    **Key Findings:**
    - We identified distinct crime profiles among US states
    - Each cluster represents a unique pattern of crime rates and urban population
    - Some states show surprising similarities despite geographic distance
    
    **Policy Recommendations:**
    1. High-Priority States: Focus on states in high-crime clusters
    2. Resource Allocation: Distribute federal crime prevention funds based on cluster profiles
    3. Best Practice Sharing: Encourage states within the same cluster to share successful strategies
    """)
    
    # Additional Resources
    st.header("Additional Resources")
    st.write("""
    - [Scikit-learn Clustering Documentation](https://scikit-learn.org/stable/modules/clustering.html)
    - [KNN Documentation](https://scikit-learn.org/stable/modules/neighbors.html)
    """)