Spaces:
Running
Running
raymondEDS
commited on
Commit
·
223d6e3
1
Parent(s):
ae38d1c
week 5 final
Browse files- app/pages/__pycache__/week_5.cpython-311.pyc +0 -0
- app/pages/week_5.py +1060 -214
app/pages/__pycache__/week_5.cpython-311.pyc
CHANGED
Binary files a/app/pages/__pycache__/week_5.cpython-311.pyc and b/app/pages/__pycache__/week_5.cpython-311.pyc differ
|
|
app/pages/week_5.py
CHANGED
@@ -4,18 +4,60 @@ import numpy as np
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
from sklearn.linear_model import LinearRegression
|
7 |
-
from sklearn.metrics import r2_score
|
|
|
8 |
import scipy.stats as stats
|
9 |
-
from nltk.tokenize import word_tokenize
|
10 |
import plotly.express as px
|
11 |
import plotly.graph_objects as go
|
12 |
from pathlib import Path
|
13 |
import os
|
|
|
|
|
14 |
|
15 |
# Set up the style for all plots
|
16 |
plt.style.use('default')
|
17 |
sns.set_theme(style="whitegrid", palette="husl")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def load_data():
|
20 |
"""Load and prepare the data"""
|
21 |
# Get the current file's directory
|
@@ -31,45 +73,166 @@ def load_data():
|
|
31 |
df_dec = pd.read_csv(data_dir / "decision.csv")
|
32 |
df_keyword = pd.read_csv(data_dir / "submission_keyword.csv")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return df_reviews, df_submissions, df_dec, df_keyword
|
35 |
except FileNotFoundError as e:
|
36 |
st.error(f"Data files not found. Please make sure the data files are in the correct location: {data_dir}")
|
37 |
st.error(f"Error details: {str(e)}")
|
38 |
return None, None, None, None
|
|
|
|
|
|
|
39 |
|
40 |
def create_feature_plot(df, x_col, y_col, title):
|
41 |
"""Create an interactive scatter plot using plotly"""
|
42 |
-
|
|
|
|
|
|
|
43 |
title=title,
|
44 |
labels={x_col: x_col.replace('_', ' ').title(),
|
45 |
y_col: y_col.replace('_', ' ').title()},
|
46 |
-
template="
|
47 |
fig.update_layout(
|
48 |
title_x=0.5,
|
49 |
title_font_size=20,
|
50 |
showlegend=True,
|
51 |
-
plot_bgcolor='
|
52 |
-
paper_bgcolor='
|
|
|
53 |
)
|
54 |
return fig
|
55 |
|
56 |
def create_correlation_heatmap(df, columns):
|
57 |
"""Create a correlation heatmap using plotly"""
|
58 |
-
|
|
|
|
|
|
|
59 |
fig = go.Figure(data=go.Heatmap(
|
60 |
z=corr,
|
61 |
x=corr.columns,
|
62 |
y=corr.columns,
|
63 |
colorscale='RdBu',
|
64 |
-
zmin=-1, zmax=1
|
|
|
|
|
|
|
65 |
))
|
66 |
fig.update_layout(
|
67 |
title='Feature Correlation Heatmap',
|
68 |
title_x=0.5,
|
69 |
title_font_size=20,
|
70 |
-
plot_bgcolor='
|
71 |
-
paper_bgcolor='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return fig
|
74 |
|
75 |
def show():
|
@@ -101,7 +264,49 @@ def show():
|
|
101 |
2. **Correlation Analysis (相关性分析):**
|
102 |
- Definition: Statistical measure that shows how strongly two variables are related
|
103 |
- Range: -1 (perfect negative correlation) to +1 (perfect positive correlation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
105 |
3. **Reading Linear Regression Output (解读线性回归结果):**
|
106 |
- R-squared (R²): Proportion of variance explained by the model (0-1)
|
107 |
- p-value: Probability that the observed relationship occurred by chance
|
@@ -111,230 +316,871 @@ def show():
|
|
111 |
""")
|
112 |
|
113 |
# Load the data
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
Let's create more sophisticated features from our review data:
|
150 |
-
- Review length (word count)
|
151 |
-
- Review rating
|
152 |
-
- Reviewer confidence
|
153 |
-
- Number of keywords in the paper
|
154 |
-
""")
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
|
159 |
-
"Enter a review to analyze:",
|
160 |
-
"This paper introduces a novel approach to machine learning. The methodology is sound and the results are promising.",
|
161 |
-
key="review_text"
|
162 |
-
)
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
#
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
with col1:
|
172 |
-
st.metric("
|
|
|
173 |
with col2:
|
174 |
-
st.metric("
|
175 |
-
|
176 |
-
st.metric("Average Words per Sentence", f"{word_count/sentence_count:.1f}")
|
177 |
-
|
178 |
-
# Module 3: Linear Regression Analysis
|
179 |
-
st.header("Module 3: Linear Regression Analysis")
|
180 |
-
st.write("""
|
181 |
-
Let's build a linear regression model to predict paper ratings based on review features.
|
182 |
-
""")
|
183 |
-
|
184 |
-
# Prepare data for modeling
|
185 |
-
X = df_reviews[['word_count', 'confidence_int']]
|
186 |
-
y = df_reviews['rating_int']
|
187 |
-
|
188 |
-
# Fit regression model
|
189 |
-
model = LinearRegression()
|
190 |
-
model.fit(X, y)
|
191 |
-
|
192 |
-
# Create 3D visualization of the regression
|
193 |
-
st.subheader("3D Visualization of Review Features")
|
194 |
-
fig = px.scatter_3d(df_reviews.sample(1000),
|
195 |
-
x='word_count',
|
196 |
-
y='confidence_int',
|
197 |
-
z='rating_int',
|
198 |
-
title='Review Features in 3D Space',
|
199 |
-
labels={
|
200 |
-
'word_count': 'Word Count',
|
201 |
-
'confidence_int': 'Confidence',
|
202 |
-
'rating_int': 'Rating'
|
203 |
-
})
|
204 |
-
fig.update_layout(
|
205 |
-
title_x=0.5,
|
206 |
-
title_font_size=20,
|
207 |
-
scene = dict(
|
208 |
-
xaxis_title='Word Count',
|
209 |
-
yaxis_title='Confidence',
|
210 |
-
zaxis_title='Rating'
|
211 |
-
)
|
212 |
-
)
|
213 |
-
st.plotly_chart(fig, use_container_width=True)
|
214 |
-
|
215 |
-
# Show model metrics
|
216 |
-
st.subheader("Model Performance")
|
217 |
-
col1, col2, col3 = st.columns(3)
|
218 |
-
with col1:
|
219 |
-
st.metric("R-squared", f"{model.score(X, y):.3f}")
|
220 |
-
with col2:
|
221 |
-
st.metric("Word Count Coefficient", f"{model.coef_[0]:.3f}")
|
222 |
-
with col3:
|
223 |
-
st.metric("Confidence Coefficient", f"{model.coef_[1]:.3f}")
|
224 |
-
|
225 |
-
# Practice Exercises
|
226 |
-
st.header("Practice Exercises")
|
227 |
-
|
228 |
-
with st.expander("Exercise 1: Feature Engineering"):
|
229 |
-
st.write("""
|
230 |
-
1. Load the reviews dataset
|
231 |
-
2. Create features from review text
|
232 |
-
3. Calculate correlation between features
|
233 |
-
4. Visualize relationships
|
234 |
-
""")
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
from nltk.tokenize import word_tokenize
|
241 |
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
244 |
|
245 |
-
# Create
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
lambda x: len(x.split('.')))
|
250 |
|
251 |
-
#
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
#
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
st.write("""
|
262 |
-
|
263 |
-
2. Split data into training and test sets
|
264 |
-
3. Train a linear regression model
|
265 |
-
4. Evaluate model performance
|
266 |
""")
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
y = df_reviews['rating_int']
|
276 |
|
277 |
-
#
|
278 |
-
|
279 |
-
|
|
|
280 |
|
281 |
-
#
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
#
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
|
290 |
-
|
|
|
|
|
291 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
-
|
298 |
-
st.
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
except Exception as e:
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.metrics import r2_score, mean_squared_error
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
import scipy.stats as stats
|
|
|
10 |
import plotly.express as px
|
11 |
import plotly.graph_objects as go
|
12 |
from pathlib import Path
|
13 |
import os
|
14 |
+
import re
|
15 |
+
from plotly.subplots import make_subplots
|
16 |
|
17 |
# Set up the style for all plots
|
18 |
plt.style.use('default')
|
19 |
sns.set_theme(style="whitegrid", palette="husl")
|
20 |
|
21 |
+
def simple_word_tokenize(text):
|
22 |
+
"""Simple word tokenization function"""
|
23 |
+
# Convert to string and lowercase
|
24 |
+
text = str(text).lower()
|
25 |
+
# Remove special characters and extra whitespace
|
26 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
27 |
+
# Split on whitespace and remove empty strings
|
28 |
+
words = [word for word in text.split() if word]
|
29 |
+
return words
|
30 |
+
|
31 |
+
def simple_sentence_split(text):
|
32 |
+
"""Simple sentence splitting function"""
|
33 |
+
# Convert to string
|
34 |
+
text = str(text)
|
35 |
+
# Split on common sentence endings
|
36 |
+
sentences = re.split(r'[.!?]+', text)
|
37 |
+
# Remove empty strings and strip whitespace
|
38 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
39 |
+
return sentences
|
40 |
+
|
41 |
+
def extract_text_features(text):
|
42 |
+
"""Extract basic features from text"""
|
43 |
+
try:
|
44 |
+
# Handle NaN or None values
|
45 |
+
if pd.isna(text) or text is None:
|
46 |
+
return None # Return None instead of default values
|
47 |
+
|
48 |
+
words = simple_word_tokenize(text)
|
49 |
+
sentences = simple_sentence_split(text)
|
50 |
+
|
51 |
+
features = {
|
52 |
+
'word_count': len(words),
|
53 |
+
'sentence_count': len(sentences),
|
54 |
+
'avg_word_length': np.mean([len(word) for word in words]) if words else None,
|
55 |
+
'avg_sentence_length': len(words) / len(sentences) if sentences else None
|
56 |
+
}
|
57 |
+
return features
|
58 |
+
except Exception as e:
|
59 |
+
return None # Return None if any error occurs
|
60 |
+
|
61 |
def load_data():
|
62 |
"""Load and prepare the data"""
|
63 |
# Get the current file's directory
|
|
|
73 |
df_dec = pd.read_csv(data_dir / "decision.csv")
|
74 |
df_keyword = pd.read_csv(data_dir / "submission_keyword.csv")
|
75 |
|
76 |
+
# Clean the data by dropping rows with NaN values in critical columns
|
77 |
+
df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int'])
|
78 |
+
|
79 |
+
# Extract features
|
80 |
+
features = df_reviews['review'].apply(extract_text_features)
|
81 |
+
df_features = pd.DataFrame(features.tolist())
|
82 |
+
df_reviews = pd.concat([df_reviews, df_features], axis=1)
|
83 |
+
|
84 |
+
# Drop any remaining rows with NaN values
|
85 |
+
df_reviews = df_reviews.dropna()
|
86 |
+
|
87 |
+
# Verify no NaN values remain
|
88 |
+
if df_reviews.isna().any().any():
|
89 |
+
st.warning("Some NaN values were found and those rows were dropped")
|
90 |
+
df_reviews = df_reviews.dropna()
|
91 |
+
|
92 |
return df_reviews, df_submissions, df_dec, df_keyword
|
93 |
except FileNotFoundError as e:
|
94 |
st.error(f"Data files not found. Please make sure the data files are in the correct location: {data_dir}")
|
95 |
st.error(f"Error details: {str(e)}")
|
96 |
return None, None, None, None
|
97 |
+
except Exception as e:
|
98 |
+
st.error(f"Error processing data: {str(e)}")
|
99 |
+
return None, None, None, None
|
100 |
|
101 |
def create_feature_plot(df, x_col, y_col, title):
|
102 |
"""Create an interactive scatter plot using plotly"""
|
103 |
+
# Ensure no NaN values
|
104 |
+
df_plot = df.dropna(subset=[x_col, y_col])
|
105 |
+
|
106 |
+
fig = px.scatter(df_plot, x=x_col, y=y_col,
|
107 |
title=title,
|
108 |
labels={x_col: x_col.replace('_', ' ').title(),
|
109 |
y_col: y_col.replace('_', ' ').title()},
|
110 |
+
template="plotly_dark")
|
111 |
fig.update_layout(
|
112 |
title_x=0.5,
|
113 |
title_font_size=20,
|
114 |
showlegend=True,
|
115 |
+
plot_bgcolor='rgb(30, 30, 30)',
|
116 |
+
paper_bgcolor='rgb(30, 30, 30)',
|
117 |
+
font=dict(color='white')
|
118 |
)
|
119 |
return fig
|
120 |
|
121 |
def create_correlation_heatmap(df, columns):
|
122 |
"""Create a correlation heatmap using plotly"""
|
123 |
+
# Ensure no NaN values
|
124 |
+
df_corr = df[columns].dropna()
|
125 |
+
corr = df_corr.corr()
|
126 |
+
|
127 |
fig = go.Figure(data=go.Heatmap(
|
128 |
z=corr,
|
129 |
x=corr.columns,
|
130 |
y=corr.columns,
|
131 |
colorscale='RdBu',
|
132 |
+
zmin=-1, zmax=1,
|
133 |
+
text=[[f'{val:.2f}' for val in row] for row in corr.values],
|
134 |
+
texttemplate='%{text}',
|
135 |
+
textfont={"size": 12}
|
136 |
))
|
137 |
fig.update_layout(
|
138 |
title='Feature Correlation Heatmap',
|
139 |
title_x=0.5,
|
140 |
title_font_size=20,
|
141 |
+
plot_bgcolor='rgb(30, 30, 30)',
|
142 |
+
paper_bgcolor='rgb(30, 30, 30)',
|
143 |
+
font=dict(color='white')
|
144 |
+
)
|
145 |
+
return fig
|
146 |
+
|
147 |
+
def create_regression_plot(df, x_col, y_col, title):
|
148 |
+
"""Create a scatter plot with regression line"""
|
149 |
+
# Ensure no NaN values
|
150 |
+
df_plot = df.dropna(subset=[x_col, y_col])
|
151 |
+
|
152 |
+
fig = px.scatter(df_plot, x=x_col, y=y_col,
|
153 |
+
title=title,
|
154 |
+
labels={x_col: x_col.replace('_', ' ').title(),
|
155 |
+
y_col: y_col.replace('_', ' ').title()},
|
156 |
+
template="plotly_dark")
|
157 |
+
|
158 |
+
# Add regression line
|
159 |
+
model = LinearRegression()
|
160 |
+
X = df_plot[x_col].values.reshape(-1, 1)
|
161 |
+
y = df_plot[y_col].values
|
162 |
+
model.fit(X, y)
|
163 |
+
y_pred = model.predict(X)
|
164 |
+
|
165 |
+
fig.add_trace(go.Scatter(
|
166 |
+
x=df_plot[x_col],
|
167 |
+
y=y_pred,
|
168 |
+
mode='lines',
|
169 |
+
name='Regression Line',
|
170 |
+
line=dict(color='red', width=2)
|
171 |
+
))
|
172 |
+
|
173 |
+
fig.update_layout(
|
174 |
+
title_x=0.5,
|
175 |
+
title_font_size=20,
|
176 |
+
showlegend=True,
|
177 |
+
plot_bgcolor='rgb(30, 30, 30)',
|
178 |
+
paper_bgcolor='rgb(30, 30, 30)',
|
179 |
+
font=dict(color='white')
|
180 |
+
)
|
181 |
+
return fig, model
|
182 |
+
|
183 |
+
def create_correlation_examples():
|
184 |
+
"""Create example plots showing different correlation types"""
|
185 |
+
# Generate example data
|
186 |
+
np.random.seed(42)
|
187 |
+
n_points = 100
|
188 |
+
|
189 |
+
# Perfect positive correlation
|
190 |
+
x1 = np.linspace(0, 10, n_points)
|
191 |
+
y1 = x1 + np.random.normal(0, 0.1, n_points)
|
192 |
+
|
193 |
+
# Perfect negative correlation
|
194 |
+
x2 = np.linspace(0, 10, n_points)
|
195 |
+
y2 = -x2 + np.random.normal(0, 0.1, n_points)
|
196 |
+
|
197 |
+
# Low correlation
|
198 |
+
x3 = np.random.normal(5, 2, n_points)
|
199 |
+
y3 = np.random.normal(5, 2, n_points)
|
200 |
+
|
201 |
+
# Create subplots
|
202 |
+
fig = make_subplots(rows=1, cols=3,
|
203 |
+
subplot_titles=('Perfect Positive Correlation (r ≈ 1)',
|
204 |
+
'Perfect Negative Correlation (r ≈ -1)',
|
205 |
+
'Low Correlation (r ≈ 0)'))
|
206 |
+
|
207 |
+
# Add traces
|
208 |
+
fig.add_trace(go.Scatter(x=x1, y=y1, mode='markers', name='r ≈ 1'),
|
209 |
+
row=1, col=1)
|
210 |
+
fig.add_trace(go.Scatter(x=x2, y=y2, mode='markers', name='r ≈ -1'),
|
211 |
+
row=1, col=2)
|
212 |
+
fig.add_trace(go.Scatter(x=x3, y=y3, mode='markers', name='r ≈ 0'),
|
213 |
+
row=1, col=3)
|
214 |
+
|
215 |
+
# Update layout
|
216 |
+
fig.update_layout(
|
217 |
+
height=400,
|
218 |
+
showlegend=False,
|
219 |
+
template="plotly_dark",
|
220 |
+
plot_bgcolor='rgb(30, 30, 30)',
|
221 |
+
paper_bgcolor='rgb(30, 30, 30)',
|
222 |
+
font=dict(color='white', size=14),
|
223 |
+
title=dict(
|
224 |
+
text='Examples of Different Correlation Types',
|
225 |
+
x=0.5,
|
226 |
+
y=0.95,
|
227 |
+
font=dict(size=20)
|
228 |
+
)
|
229 |
)
|
230 |
+
|
231 |
+
# Update axes
|
232 |
+
for i in range(1, 4):
|
233 |
+
fig.update_xaxes(title_text='X', row=1, col=i)
|
234 |
+
fig.update_yaxes(title_text='Y', row=1, col=i)
|
235 |
+
|
236 |
return fig
|
237 |
|
238 |
def show():
|
|
|
264 |
2. **Correlation Analysis (相关性分析):**
|
265 |
- Definition: Statistical measure that shows how strongly two variables are related
|
266 |
- Range: -1 (perfect negative correlation) to +1 (perfect positive correlation)
|
267 |
+
""")
|
268 |
+
|
269 |
+
# Add correlation examples
|
270 |
+
st.write("Here are examples of different correlation types:")
|
271 |
+
corr_examples = create_correlation_examples()
|
272 |
+
st.plotly_chart(corr_examples, use_container_width=True)
|
273 |
+
|
274 |
+
# Show example code for correlation analysis
|
275 |
+
with st.expander("Example Code: Correlation Analysis"):
|
276 |
+
st.code("""
|
277 |
+
# Example: Calculating and visualizing correlations
|
278 |
+
import numpy as np
|
279 |
+
import pandas as pd
|
280 |
+
import plotly.graph_objects as go
|
281 |
+
from plotly.subplots import make_subplots
|
282 |
+
|
283 |
+
# Generate example data
|
284 |
+
np.random.seed(42)
|
285 |
+
n_points = 100
|
286 |
+
|
287 |
+
# Perfect positive correlation
|
288 |
+
x1 = np.linspace(0, 10, n_points)
|
289 |
+
y1 = x1 + np.random.normal(0, 0.1, n_points)
|
290 |
+
|
291 |
+
# Perfect negative correlation
|
292 |
+
x2 = np.linspace(0, 10, n_points)
|
293 |
+
y2 = -x2 + np.random.normal(0, 0.1, n_points)
|
294 |
+
|
295 |
+
# Low correlation
|
296 |
+
x3 = np.random.normal(5, 2, n_points)
|
297 |
+
y3 = np.random.normal(5, 2, n_points)
|
298 |
+
|
299 |
+
# Calculate correlations
|
300 |
+
corr1 = np.corrcoef(x1, y1)[0,1] # Should be close to 1
|
301 |
+
corr2 = np.corrcoef(x2, y2)[0,1] # Should be close to -1
|
302 |
+
corr3 = np.corrcoef(x3, y3)[0,1] # Should be close to 0
|
303 |
+
|
304 |
+
print(f"Correlation 1: {corr1:.3f}")
|
305 |
+
print(f"Correlation 2: {corr2:.3f}")
|
306 |
+
print(f"Correlation 3: {corr3:.3f}")
|
307 |
+
""")
|
308 |
|
309 |
+
st.write("""
|
310 |
3. **Reading Linear Regression Output (解读线性回归结果):**
|
311 |
- R-squared (R²): Proportion of variance explained by the model (0-1)
|
312 |
- p-value: Probability that the observed relationship occurred by chance
|
|
|
316 |
""")
|
317 |
|
318 |
# Load the data
|
319 |
+
df_reviews, df_submissions, df_dec, df_keyword = load_data()
|
320 |
+
|
321 |
+
if df_reviews is not None:
|
322 |
+
try:
|
323 |
+
# Module 1: Data Exploration
|
324 |
+
st.header("Module 1: Data Exploration")
|
325 |
+
st.write("Let's explore our dataset to understand the review patterns:")
|
326 |
+
|
327 |
+
# Show example code for data loading and cleaning
|
328 |
+
with st.expander("Example Code: Data Loading and Cleaning"):
|
329 |
+
st.code("""
|
330 |
+
# Load and clean the data
|
331 |
+
import pandas as pd
|
332 |
+
import numpy as np
|
333 |
+
|
334 |
+
def load_and_clean_data():
|
335 |
+
# Load datasets
|
336 |
+
df_reviews = pd.read_csv('reviews.csv')
|
337 |
+
df_submissions = pd.read_csv('Submissions.csv')
|
338 |
+
df_dec = pd.read_csv('decision.csv')
|
339 |
+
df_keyword = pd.read_csv('submission_keyword.csv')
|
340 |
+
|
341 |
+
# Clean reviews data
|
342 |
+
df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int'])
|
343 |
+
|
344 |
+
# Extract text features
|
345 |
+
def extract_text_features(text):
|
346 |
+
if pd.isna(text) or text is None:
|
347 |
+
return {
|
348 |
+
'word_count': 0,
|
349 |
+
'sentence_count': 0,
|
350 |
+
'avg_word_length': 0,
|
351 |
+
'avg_sentence_length': 0
|
352 |
+
}
|
353 |
|
354 |
+
# Convert to string and clean
|
355 |
+
text = str(text).lower()
|
356 |
+
text = re.sub(r'[^\\w\\s]', ' ', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
# Split into words and sentences
|
359 |
+
words = [word for word in text.split() if word]
|
360 |
+
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
|
|
|
|
|
|
|
|
|
361 |
|
362 |
+
return {
|
363 |
+
'word_count': len(words),
|
364 |
+
'sentence_count': len(sentences),
|
365 |
+
'avg_word_length': np.mean([len(word) for word in words]) if words else 0,
|
366 |
+
'avg_sentence_length': len(words) / len(sentences) if sentences else 0
|
367 |
+
}
|
368 |
+
|
369 |
+
# Apply feature extraction
|
370 |
+
features = df_reviews['review'].apply(extract_text_features)
|
371 |
+
df_features = pd.DataFrame(features.tolist())
|
372 |
+
df_reviews = pd.concat([df_reviews, df_features], axis=1)
|
373 |
+
|
374 |
+
# Fill any remaining NaN values
|
375 |
+
df_reviews = df_reviews.fillna(0)
|
376 |
+
|
377 |
+
return df_reviews, df_submissions, df_dec, df_keyword
|
378 |
+
""")
|
379 |
|
380 |
+
# Verify data quality
|
381 |
+
st.subheader("Data Quality Check")
|
382 |
+
missing_data = df_reviews.isna().sum()
|
383 |
+
if missing_data.any():
|
384 |
+
st.warning("Missing values found in the dataset:")
|
385 |
+
st.write(missing_data[missing_data > 0])
|
386 |
+
|
387 |
+
# Show basic statistics
|
388 |
+
col1, col2 = st.columns(2)
|
389 |
with col1:
|
390 |
+
st.metric("Total Reviews", len(df_reviews))
|
391 |
+
st.metric("Average Rating", f"{df_reviews['rating_int'].mean():.2f}")
|
392 |
with col2:
|
393 |
+
st.metric("Average Word Count", f"{df_reviews['word_count'].mean():.0f}")
|
394 |
+
st.metric("Average Confidence", f"{df_reviews['confidence_int'].mean():.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
+
# Interactive feature selection
|
397 |
+
st.subheader("Interactive Feature Analysis")
|
398 |
+
feature_cols = ['word_count', 'sentence_count', 'avg_word_length',
|
399 |
+
'avg_sentence_length', 'rating_int', 'confidence_int']
|
|
|
400 |
|
401 |
+
col1, col2 = st.columns(2)
|
402 |
+
with col1:
|
403 |
+
x_feature = st.selectbox("Select X-axis feature:", feature_cols)
|
404 |
+
with col2:
|
405 |
+
y_feature = st.selectbox("Select Y-axis feature:", feature_cols)
|
406 |
|
407 |
+
# Create interactive plot
|
408 |
+
fig = create_feature_plot(df_reviews, x_feature, y_feature,
|
409 |
+
f'{x_feature.replace("_", " ").title()} vs {y_feature.replace("_", " ").title()}')
|
410 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
411 |
|
412 |
+
# Show correlation between selected features
|
413 |
+
corr = df_reviews[[x_feature, y_feature]].corr().iloc[0,1]
|
414 |
+
st.write(f"Correlation between {x_feature} and {y_feature}: {corr:.3f}")
|
415 |
|
416 |
+
# Distribution plots
|
417 |
+
st.subheader("Distribution of Ratings and Confidence")
|
418 |
+
col1, col2 = st.columns(2)
|
419 |
+
with col1:
|
420 |
+
fig = px.histogram(df_reviews.dropna(subset=['rating_int']),
|
421 |
+
x='rating_int',
|
422 |
+
title='Distribution of Ratings',
|
423 |
+
template="plotly_dark")
|
424 |
+
st.plotly_chart(fig, use_container_width=True)
|
425 |
+
with col2:
|
426 |
+
fig = px.histogram(df_reviews.dropna(subset=['confidence_int']),
|
427 |
+
x='confidence_int',
|
428 |
+
title='Distribution of Confidence',
|
429 |
+
template="plotly_dark")
|
430 |
+
st.plotly_chart(fig, use_container_width=True)
|
431 |
+
|
432 |
+
# Show example code for distribution analysis
|
433 |
+
with st.expander("Example Code: Distribution Analysis"):
|
434 |
+
st.code("""
|
435 |
+
# Analyze distributions of numerical features
|
436 |
+
import plotly.express as px
|
437 |
+
|
438 |
+
def analyze_distributions(df):
|
439 |
+
# Create histograms for key features
|
440 |
+
fig1 = px.histogram(df, x='rating_int',
|
441 |
+
title='Distribution of Ratings',
|
442 |
+
template="plotly_dark")
|
443 |
+
|
444 |
+
fig2 = px.histogram(df, x='confidence_int',
|
445 |
+
title='Distribution of Confidence',
|
446 |
+
template="plotly_dark")
|
447 |
+
|
448 |
+
# Calculate summary statistics
|
449 |
+
stats = df[['rating_int', 'confidence_int']].describe()
|
450 |
+
|
451 |
+
return fig1, fig2, stats
|
452 |
+
|
453 |
+
# Usage
|
454 |
+
fig1, fig2, stats = analyze_distributions(df_reviews)
|
455 |
+
print(stats)
|
456 |
+
""")
|
457 |
+
|
458 |
+
# Text feature distributions
|
459 |
+
st.subheader("Text Feature Distributions")
|
460 |
+
col1, col2 = st.columns(2)
|
461 |
+
with col1:
|
462 |
+
fig = px.histogram(df_reviews.dropna(subset=['avg_word_length']),
|
463 |
+
x='avg_word_length',
|
464 |
+
title='Average Word Length Distribution',
|
465 |
+
template="plotly_dark")
|
466 |
+
st.plotly_chart(fig, use_container_width=True)
|
467 |
+
with col2:
|
468 |
+
fig = px.histogram(df_reviews.dropna(subset=['avg_sentence_length']),
|
469 |
+
x='avg_sentence_length',
|
470 |
+
title='Average Sentence Length Distribution',
|
471 |
+
template="plotly_dark")
|
472 |
+
st.plotly_chart(fig, use_container_width=True)
|
473 |
+
|
474 |
+
# Correlation analysis
|
475 |
+
st.subheader("Feature Correlations")
|
476 |
+
corr_fig = create_correlation_heatmap(df_reviews, feature_cols)
|
477 |
+
st.plotly_chart(corr_fig, use_container_width=True)
|
478 |
+
|
479 |
+
# Show example code for correlation analysis
|
480 |
+
with st.expander("Example Code: Correlation Analysis"):
|
481 |
+
st.code("""
|
482 |
+
# Analyze correlations between features
|
483 |
+
import plotly.graph_objects as go
|
484 |
+
|
485 |
+
def analyze_correlations(df, columns):
|
486 |
+
# Calculate correlation matrix
|
487 |
+
corr = df[columns].corr()
|
488 |
+
|
489 |
+
# Create heatmap
|
490 |
+
fig = go.Figure(data=go.Heatmap(
|
491 |
+
z=corr,
|
492 |
+
x=corr.columns,
|
493 |
+
y=corr.columns,
|
494 |
+
colorscale='RdBu',
|
495 |
+
zmin=-1, zmax=1,
|
496 |
+
text=[[f'{val:.2f}' for val in row] for row in corr.values],
|
497 |
+
texttemplate='%{text}',
|
498 |
+
textfont={"size": 12}
|
499 |
+
))
|
500 |
+
|
501 |
+
fig.update_layout(
|
502 |
+
title='Feature Correlation Heatmap',
|
503 |
+
template="plotly_dark"
|
504 |
+
)
|
505 |
+
|
506 |
+
return fig, corr
|
507 |
+
|
508 |
+
# Usage
|
509 |
+
fig, corr_matrix = analyze_correlations(df_reviews, feature_cols)
|
510 |
+
print(corr_matrix)
|
511 |
+
""")
|
512 |
+
|
513 |
+
# Module 2: Simple Linear Regression
|
514 |
+
st.header("Module 2: Simple Linear Regression")
|
515 |
st.write("""
|
516 |
+
Let's explore the relationship between review length and rating using simple linear regression.
|
|
|
|
|
|
|
517 |
""")
|
518 |
|
519 |
+
# Interactive feature selection for regression
|
520 |
+
st.subheader("Interactive Regression Analysis")
|
521 |
+
col1, col2 = st.columns(2)
|
522 |
+
with col1:
|
523 |
+
x_reg = st.selectbox("Select feature for X-axis:", feature_cols)
|
524 |
+
with col2:
|
525 |
+
y_reg = st.selectbox("Select target variable:", feature_cols)
|
|
|
526 |
|
527 |
+
# Create regression plot
|
528 |
+
fig, model = create_regression_plot(df_reviews, x_reg, y_reg,
|
529 |
+
f'{x_reg.replace("_", " ").title()} vs {y_reg.replace("_", " ").title()}')
|
530 |
+
st.plotly_chart(fig, use_container_width=True)
|
531 |
|
532 |
+
# Show regression metrics
|
533 |
+
st.subheader("Regression Metrics")
|
534 |
+
col1, col2 = st.columns(2)
|
535 |
+
with col1:
|
536 |
+
r2_score = model.score(df_reviews[[x_reg]].dropna(),
|
537 |
+
df_reviews[y_reg].dropna())
|
538 |
+
st.metric("R-squared", f"{r2_score:.3f}")
|
539 |
+
with col2:
|
540 |
+
st.metric("Slope", f"{model.coef_[0]:.3f}")
|
541 |
|
542 |
+
# Show example code for simple linear regression
|
543 |
+
with st.expander("Example Code: Simple Linear Regression"):
|
544 |
+
st.code('''
|
545 |
+
# Perform simple linear regression
|
546 |
+
from sklearn.linear_model import LinearRegression
|
547 |
+
import plotly.graph_objects as go
|
548 |
+
|
549 |
+
def simple_linear_regression(df, x_col, y_col, title=None):
|
550 |
+
"""
|
551 |
+
Perform simple linear regression on any DataFrame.
|
552 |
+
|
553 |
+
Parameters:
|
554 |
+
-----------
|
555 |
+
df : pandas.DataFrame
|
556 |
+
Input DataFrame containing the features
|
557 |
+
x_col : str
|
558 |
+
Name of the column to use as independent variable
|
559 |
+
y_col : str
|
560 |
+
Name of the column to use as dependent variable
|
561 |
+
title : str, optional
|
562 |
+
Title for the plot. If None, will use column names
|
563 |
+
|
564 |
+
Returns:
|
565 |
+
--------
|
566 |
+
tuple
|
567 |
+
(model, r2_score, fig) where:
|
568 |
+
- model is the fitted LinearRegression object
|
569 |
+
- r2_score is the R-squared value
|
570 |
+
- fig is the plotly figure object
|
571 |
+
"""
|
572 |
+
# Handle missing values by dropping them
|
573 |
+
df_clean = df.dropna(subset=[x_col, y_col])
|
574 |
+
|
575 |
+
if len(df_clean) == 0:
|
576 |
+
raise ValueError("No valid data points after removing missing values")
|
577 |
+
|
578 |
+
# Prepare data
|
579 |
+
X = df_clean[[x_col]]
|
580 |
+
y = df_clean[y_col]
|
581 |
+
|
582 |
+
# Fit model
|
583 |
+
model = LinearRegression()
|
584 |
+
model.fit(X, y)
|
585 |
+
|
586 |
+
# Calculate R-squared
|
587 |
+
r2_score = model.score(X, y)
|
588 |
+
|
589 |
+
# Create visualization
|
590 |
+
fig = go.Figure()
|
591 |
+
|
592 |
+
# Add scatter plot
|
593 |
+
fig.add_trace(go.Scatter(
|
594 |
+
x=X[x_col],
|
595 |
+
y=y,
|
596 |
+
mode='markers',
|
597 |
+
name='Data Points',
|
598 |
+
marker=dict(size=8, opacity=0.6)
|
599 |
+
))
|
600 |
+
|
601 |
+
# Add regression line
|
602 |
+
x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100)
|
603 |
+
y_pred = model.predict(x_range.reshape(-1, 1))
|
604 |
+
|
605 |
+
fig.add_trace(go.Scatter(
|
606 |
+
x=x_range,
|
607 |
+
y=y_pred,
|
608 |
+
mode='lines',
|
609 |
+
name='Regression Line',
|
610 |
+
line=dict(color='red', width=2)
|
611 |
+
))
|
612 |
+
|
613 |
+
# Update layout
|
614 |
+
title = title or f'{x_col} vs {y_col}'
|
615 |
+
fig.update_layout(
|
616 |
+
title=title,
|
617 |
+
xaxis_title=x_col,
|
618 |
+
yaxis_title=y_col,
|
619 |
+
template="plotly_dark",
|
620 |
+
showlegend=True
|
621 |
+
)
|
622 |
+
|
623 |
+
return model, r2_score, fig
|
624 |
+
|
625 |
+
# Usage
|
626 |
+
fig, model = simple_linear_regression(df_reviews, 'word_count', 'rating_int')
|
627 |
+
print(f"R-squared: {model.score(X, y):.3f}")
|
628 |
+
print(f"Slope: {model.coef_[0]:.3f}")
|
629 |
+
''')
|
630 |
|
631 |
+
# Module 3: Multiple Linear Regression
|
632 |
+
st.header("Module 3: Multiple Linear Regression")
|
633 |
+
st.write("""
|
634 |
+
Now let's build a more complex model using multiple features to predict ratings.
|
635 |
""")
|
636 |
+
|
637 |
+
try:
|
638 |
+
# Prepare data for modeling
|
639 |
+
feature_cols = ['word_count', 'sentence_count',
|
640 |
+
'avg_word_length', 'avg_sentence_length',
|
641 |
+
'confidence_int']
|
642 |
+
|
643 |
+
# Interactive feature selection for multiple regression
|
644 |
+
st.subheader("Select Features for Multiple Regression")
|
645 |
+
selected_features = st.multiselect(
|
646 |
+
"Choose features to include in the model:",
|
647 |
+
feature_cols,
|
648 |
+
default=feature_cols
|
649 |
+
)
|
650 |
+
|
651 |
+
if selected_features:
|
652 |
+
# Ensure no NaN values in features
|
653 |
+
df_model = df_reviews.dropna(subset=selected_features + ['rating_int'])
|
654 |
+
|
655 |
+
X = df_model[selected_features]
|
656 |
+
y = df_model['rating_int']
|
657 |
+
|
658 |
+
# Split data
|
659 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
660 |
+
|
661 |
+
# Fit regression model
|
662 |
+
model = LinearRegression()
|
663 |
+
model.fit(X_train, y_train)
|
664 |
+
|
665 |
+
# Create 3D visualization if exactly 2 features are selected
|
666 |
+
if len(selected_features) == 2:
|
667 |
+
st.subheader("3D Visualization of Selected Features")
|
668 |
+
fig = px.scatter_3d(df_model.sample(min(1000, len(df_model))),
|
669 |
+
x=selected_features[0],
|
670 |
+
y=selected_features[1],
|
671 |
+
z='rating_int',
|
672 |
+
title='Review Features in 3D Space',
|
673 |
+
template="plotly_dark")
|
674 |
+
fig.update_layout(
|
675 |
+
title_x=0.5,
|
676 |
+
title_font_size=20,
|
677 |
+
scene = dict(
|
678 |
+
xaxis_title=selected_features[0].replace('_', ' ').title(),
|
679 |
+
yaxis_title=selected_features[1].replace('_', ' ').title(),
|
680 |
+
zaxis_title='Rating'
|
681 |
+
)
|
682 |
+
)
|
683 |
+
st.plotly_chart(fig, use_container_width=True)
|
684 |
+
|
685 |
+
# Show model metrics
|
686 |
+
st.subheader("Model Performance")
|
687 |
+
col1, col2, col3 = st.columns(3)
|
688 |
+
with col1:
|
689 |
+
st.metric("Training R²", f"{model.score(X_train, y_train):.3f}")
|
690 |
+
with col2:
|
691 |
+
st.metric("Testing R²", f"{model.score(X_test, y_test):.3f}")
|
692 |
+
with col3:
|
693 |
+
st.metric("RMSE", f"{np.sqrt(mean_squared_error(y_test, model.predict(X_test))):.3f}")
|
694 |
+
|
695 |
+
# Show coefficients
|
696 |
+
st.subheader("Model Coefficients")
|
697 |
+
coef_df = pd.DataFrame({
|
698 |
+
'Feature': X.columns,
|
699 |
+
'Coefficient': model.coef_
|
700 |
+
})
|
701 |
+
st.dataframe(coef_df)
|
702 |
+
|
703 |
+
# Show example code for multiple linear regression
|
704 |
+
with st.expander("Example Code: Multiple Linear Regression"):
|
705 |
+
st.code('''
|
706 |
+
# Perform multiple linear regression
|
707 |
+
from sklearn.model_selection import train_test_split
|
708 |
+
from sklearn.metrics import mean_squared_error
|
709 |
+
|
710 |
+
def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42):
|
711 |
+
"""
|
712 |
+
Perform multiple linear regression on any DataFrame.
|
713 |
+
|
714 |
+
Parameters:
|
715 |
+
-----------
|
716 |
+
df : pandas.DataFrame
|
717 |
+
Input DataFrame containing the features
|
718 |
+
feature_cols : list of str
|
719 |
+
Names of the columns to use as independent variables
|
720 |
+
target_col : str
|
721 |
+
Name of the column to use as dependent variable
|
722 |
+
test_size : float, optional
|
723 |
+
Proportion of data to use for testing
|
724 |
+
random_state : int, optional
|
725 |
+
Random seed for reproducibility
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
--------
|
729 |
+
tuple
|
730 |
+
(model, metrics, coef_df, fig) where:
|
731 |
+
- model is the fitted LinearRegression object
|
732 |
+
- metrics is a dictionary of performance metrics
|
733 |
+
- coef_df is a DataFrame of feature coefficients
|
734 |
+
- fig is the plotly figure object (if 2 features selected)
|
735 |
+
"""
|
736 |
+
# Handle missing values by dropping them
|
737 |
+
df_clean = df.dropna(subset=feature_cols + [target_col])
|
738 |
+
|
739 |
+
if len(df_clean) == 0:
|
740 |
+
raise ValueError("No valid data points after removing missing values")
|
741 |
+
|
742 |
+
# Prepare data
|
743 |
+
X = df_clean[feature_cols]
|
744 |
+
y = df_clean[target_col]
|
745 |
+
|
746 |
+
# Split data
|
747 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
748 |
+
X, y, test_size=test_size, random_state=random_state)
|
749 |
+
|
750 |
+
# Fit model
|
751 |
+
model = LinearRegression()
|
752 |
+
model.fit(X_train, y_train)
|
753 |
+
|
754 |
+
# Make predictions
|
755 |
+
y_train_pred = model.predict(X_train)
|
756 |
+
y_test_pred = model.predict(X_test)
|
757 |
+
|
758 |
+
# Calculate metrics
|
759 |
+
metrics = {
|
760 |
+
'train_r2': r2_score(y_train, y_train_pred),
|
761 |
+
'test_r2': r2_score(y_test, y_test_pred),
|
762 |
+
'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)),
|
763 |
+
'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred))
|
764 |
+
}
|
765 |
+
|
766 |
+
# Create coefficient DataFrame
|
767 |
+
coef_df = pd.DataFrame({
|
768 |
+
'Feature': feature_cols,
|
769 |
+
'Coefficient': model.coef_,
|
770 |
+
'Absolute_Impact': np.abs(model.coef_)
|
771 |
+
}).sort_values('Absolute_Impact', ascending=False)
|
772 |
+
|
773 |
+
# Create visualization if exactly 2 features are selected
|
774 |
+
fig = None
|
775 |
+
if len(feature_cols) == 2:
|
776 |
+
fig = px.scatter_3d(
|
777 |
+
df_clean.sample(min(1000, len(df_clean))),
|
778 |
+
x=feature_cols[0],
|
779 |
+
y=feature_cols[1],
|
780 |
+
z=target_col,
|
781 |
+
title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}',
|
782 |
+
template="plotly_dark"
|
783 |
+
)
|
784 |
+
|
785 |
+
# Add regression plane
|
786 |
+
x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20)
|
787 |
+
y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20)
|
788 |
+
x_grid, y_grid = np.meshgrid(x_range, y_range)
|
789 |
+
|
790 |
+
z_grid = (model.intercept_ +
|
791 |
+
model.coef_[0] * x_grid +
|
792 |
+
model.coef_[1] * y_grid)
|
793 |
+
|
794 |
+
fig.add_trace(go.Surface(
|
795 |
+
x=x_grid,
|
796 |
+
y=y_grid,
|
797 |
+
z=z_grid,
|
798 |
+
opacity=0.5,
|
799 |
+
showscale=False
|
800 |
+
))
|
801 |
+
|
802 |
+
return model, metrics, coef_df, fig
|
803 |
|
804 |
+
# Usage
|
805 |
+
model, train_score, test_score, rmse, coef_df = multiple_linear_regression(
|
806 |
+
df_reviews,
|
807 |
+
['word_count', 'sentence_count', 'confidence_int'],
|
808 |
+
'rating_int'
|
809 |
+
)
|
810 |
+
print(f"Training R²: {train_score:.3f}")
|
811 |
+
print(f"Testing R²: {test_score:.3f}")
|
812 |
+
print(f"RMSE: {rmse:.3f}")
|
813 |
+
print(coef_df)
|
814 |
+
''')
|
815 |
+
|
816 |
+
except Exception as e:
|
817 |
+
st.error(f"Error in model training: {str(e)}")
|
818 |
+
st.write("Please check the data quality and try again.")
|
819 |
|
820 |
+
except Exception as e:
|
821 |
+
st.error(f"Error in data processing: {str(e)}")
|
822 |
+
st.write("Please check the data format and try again.")
|
823 |
+
|
824 |
+
# Practice Exercises
|
825 |
+
st.header("Practice Exercises")
|
826 |
+
|
827 |
+
# Add new section for writing prompts
|
828 |
+
st.subheader("Writing Prompts for Analyzing Linear Regression Results")
|
829 |
+
st.write("""
|
830 |
+
Use these prompts to help you interpret and write about your linear regression results:
|
831 |
+
|
832 |
+
1. **Model Fit and R-squared:**
|
833 |
+
- "The model explains [R² value]% of the variance in [dependent variable], suggesting [strong/moderate/weak] predictive power."
|
834 |
+
- "With an R-squared of [value], we can conclude that [interpretation of model fit]."
|
835 |
+
- "The relatively [high/low] R-squared value indicates that [interpretation of model's explanatory power]."
|
836 |
+
|
837 |
+
2. **Statistical Significance and p-values:**
|
838 |
+
- "The p-value of [value] for [feature] suggests that this relationship is [statistically significant/not significant]."
|
839 |
+
- "Given the p-value of [value], we [can/cannot] reject the null hypothesis that [interpretation]."
|
840 |
+
- "The statistical significance (p = [value]) indicates that [interpretation of relationship]."
|
841 |
+
|
842 |
+
3. **Coefficients and Their Meaning:**
|
843 |
+
- "For each unit increase in [independent variable], [dependent variable] [increases/decreases] by [coefficient value] units."
|
844 |
+
- "The coefficient of [value] for [feature] suggests that [interpretation of relationship]."
|
845 |
+
- "The positive/negative coefficient indicates that [interpretation of direction of relationship]."
|
846 |
+
|
847 |
+
4. **Uncertainty and Standard Errors:**
|
848 |
+
- "The standard error of [value] for [feature] indicates [interpretation of precision]."
|
849 |
+
- "The relatively [small/large] standard error suggests that [interpretation of estimate reliability]."
|
850 |
+
- "The uncertainty in our coefficient estimates, as shown by the standard errors, [interpretation of confidence in results]."
|
851 |
+
|
852 |
+
5. **Confidence Intervals:**
|
853 |
+
- "We are 95% confident that the true coefficient for [feature] lies between [lower bound] and [upper bound]."
|
854 |
+
- "The confidence interval [includes/does not include] zero, suggesting that [interpretation of significance]."
|
855 |
+
- "The narrow/wide confidence interval indicates [interpretation of precision]."
|
856 |
+
|
857 |
+
6. **Practical Significance:**
|
858 |
+
- "While the relationship is statistically significant, the effect size of [value] suggests [interpretation of practical importance]."
|
859 |
+
- "The coefficient of [value] indicates that [interpretation of real-world impact]."
|
860 |
+
- "In practical terms, this means that [interpretation of practical implications]."
|
861 |
+
|
862 |
+
7. **Model Limitations:**
|
863 |
+
- "The model's assumptions of [assumptions] may not hold in this case because [explanation]."
|
864 |
+
- "Potential limitations of our analysis include [list limitations]."
|
865 |
+
- "We should be cautious in interpreting these results because [explanation of limitations]."
|
866 |
+
|
867 |
+
8. **Recommendations:**
|
868 |
+
- "Based on our analysis, we recommend [specific action] because [explanation]."
|
869 |
+
- "The results suggest that [interpretation] and therefore [recommendation]."
|
870 |
+
- "To improve the model, we could [suggestions for improvement]."
|
871 |
+
""")
|
872 |
+
|
873 |
+
with st.expander("Exercise 1: Simple Linear Regression"):
|
874 |
+
st.write("""
|
875 |
+
1. Create a function that performs simple linear regression on any DataFrame
|
876 |
+
2. The function should:
|
877 |
+
- Take a DataFrame and column names as input
|
878 |
+
- Handle missing values appropriately
|
879 |
+
- Calculate and return R-squared value
|
880 |
+
- Create a visualization of the relationship
|
881 |
+
3. Test your function with different features from the dataset
|
882 |
+
""")
|
883 |
+
|
884 |
+
st.code('''
|
885 |
+
# Solution: Generic Simple Linear Regression Function
|
886 |
+
import pandas as pd
|
887 |
+
import numpy as np
|
888 |
+
from sklearn.linear_model import LinearRegression
|
889 |
+
import plotly.express as px
|
890 |
+
import plotly.graph_objects as go
|
891 |
+
|
892 |
+
def simple_linear_regression(df, x_col, y_col, title=None):
|
893 |
+
"""
|
894 |
+
Perform simple linear regression on any DataFrame.
|
895 |
+
|
896 |
+
Parameters:
|
897 |
+
-----------
|
898 |
+
df : pandas.DataFrame
|
899 |
+
Input DataFrame containing the features
|
900 |
+
x_col : str
|
901 |
+
Name of the column to use as independent variable
|
902 |
+
y_col : str
|
903 |
+
Name of the column to use as dependent variable
|
904 |
+
title : str, optional
|
905 |
+
Title for the plot. If None, will use column names
|
906 |
+
|
907 |
+
Returns:
|
908 |
+
--------
|
909 |
+
tuple
|
910 |
+
(model, r2_score, fig) where:
|
911 |
+
- model is the fitted LinearRegression object
|
912 |
+
- r2_score is the R-squared value
|
913 |
+
- fig is the plotly figure object
|
914 |
+
"""
|
915 |
+
# Handle missing values by dropping them
|
916 |
+
df_clean = df.dropna(subset=[x_col, y_col])
|
917 |
+
|
918 |
+
if len(df_clean) == 0:
|
919 |
+
raise ValueError("No valid data points after removing missing values")
|
920 |
+
|
921 |
+
# Prepare data
|
922 |
+
X = df_clean[[x_col]]
|
923 |
+
y = df_clean[y_col]
|
924 |
+
|
925 |
+
# Fit model
|
926 |
+
model = LinearRegression()
|
927 |
+
model.fit(X, y)
|
928 |
+
|
929 |
+
# Calculate R-squared
|
930 |
+
r2_score = model.score(X, y)
|
931 |
+
|
932 |
+
# Create visualization
|
933 |
+
fig = go.Figure()
|
934 |
+
|
935 |
+
# Add scatter plot
|
936 |
+
fig.add_trace(go.Scatter(
|
937 |
+
x=X[x_col],
|
938 |
+
y=y,
|
939 |
+
mode='markers',
|
940 |
+
name='Data Points',
|
941 |
+
marker=dict(size=8, opacity=0.6)
|
942 |
+
))
|
943 |
+
|
944 |
+
# Add regression line
|
945 |
+
x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100)
|
946 |
+
y_pred = model.predict(x_range.reshape(-1, 1))
|
947 |
+
|
948 |
+
fig.add_trace(go.Scatter(
|
949 |
+
x=x_range,
|
950 |
+
y=y_pred,
|
951 |
+
mode='lines',
|
952 |
+
name='Regression Line',
|
953 |
+
line=dict(color='red', width=2)
|
954 |
+
))
|
955 |
+
|
956 |
+
# Update layout
|
957 |
+
title = title or f'{x_col} vs {y_col}'
|
958 |
+
fig.update_layout(
|
959 |
+
title=title,
|
960 |
+
xaxis_title=x_col,
|
961 |
+
yaxis_title=y_col,
|
962 |
+
template="plotly_dark",
|
963 |
+
showlegend=True
|
964 |
+
)
|
965 |
+
|
966 |
+
return model, r2_score, fig
|
967 |
+
|
968 |
+
# Example usage:
|
969 |
+
# Load your data
|
970 |
+
df = pd.read_csv('your_data.csv')
|
971 |
+
|
972 |
+
# Try different feature pairs
|
973 |
+
feature_pairs = [
|
974 |
+
('word_count', 'rating_int'),
|
975 |
+
('confidence_int', 'rating_int'),
|
976 |
+
('avg_word_length', 'rating_int')
|
977 |
+
]
|
978 |
+
|
979 |
+
# Analyze each pair
|
980 |
+
for x_col, y_col in feature_pairs:
|
981 |
+
try:
|
982 |
+
model, r2, fig = simple_linear_regression(df, x_col, y_col)
|
983 |
+
print(f"\nAnalysis of {x_col} vs {y_col}:")
|
984 |
+
print(f"R-squared: {r2:.3f}")
|
985 |
+
print(f"Slope: {model.coef_[0]:.3f}")
|
986 |
+
print(f"Intercept: {model.intercept_:.3f}")
|
987 |
+
fig.show()
|
988 |
+
except Exception as e:
|
989 |
+
print(f"Error analyzing {x_col} vs {y_col}: {str(e)}")
|
990 |
+
''')
|
991 |
+
|
992 |
+
with st.expander("Exercise 2: Multiple Linear Regression"):
|
993 |
+
st.write("""
|
994 |
+
1. Create a function that performs multiple linear regression on any DataFrame
|
995 |
+
2. The function should:
|
996 |
+
- Take a DataFrame and lists of feature columns as input
|
997 |
+
- Handle missing values appropriately
|
998 |
+
- Split data into training and test sets
|
999 |
+
- Calculate and return performance metrics
|
1000 |
+
- Create visualizations of the results
|
1001 |
+
3. Test your function with different combinations of features
|
1002 |
+
""")
|
1003 |
+
|
1004 |
+
st.code('''
|
1005 |
+
# Solution: Generic Multiple Linear Regression Function
|
1006 |
+
import pandas as pd
|
1007 |
+
import numpy as np
|
1008 |
+
from sklearn.linear_model import LinearRegression
|
1009 |
+
from sklearn.model_selection import train_test_split
|
1010 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
1011 |
+
import plotly.express as px
|
1012 |
+
import plotly.graph_objects as go
|
1013 |
+
|
1014 |
+
def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42):
|
1015 |
+
"""
|
1016 |
+
Perform multiple linear regression on any DataFrame.
|
1017 |
+
|
1018 |
+
Parameters:
|
1019 |
+
-----------
|
1020 |
+
df : pandas.DataFrame
|
1021 |
+
Input DataFrame containing the features
|
1022 |
+
feature_cols : list of str
|
1023 |
+
Names of the columns to use as independent variables
|
1024 |
+
target_col : str
|
1025 |
+
Name of the column to use as dependent variable
|
1026 |
+
test_size : float, optional
|
1027 |
+
Proportion of data to use for testing
|
1028 |
+
random_state : int, optional
|
1029 |
+
Random seed for reproducibility
|
1030 |
+
|
1031 |
+
Returns:
|
1032 |
+
--------
|
1033 |
+
tuple
|
1034 |
+
(model, metrics, coef_df, fig) where:
|
1035 |
+
- model is the fitted LinearRegression object
|
1036 |
+
- metrics is a dictionary of performance metrics
|
1037 |
+
- coef_df is a DataFrame of feature coefficients
|
1038 |
+
- fig is the plotly figure object (if 2 features selected)
|
1039 |
+
"""
|
1040 |
+
# Handle missing values by dropping them
|
1041 |
+
df_clean = df.dropna(subset=feature_cols + [target_col])
|
1042 |
+
|
1043 |
+
if len(df_clean) == 0:
|
1044 |
+
raise ValueError("No valid data points after removing missing values")
|
1045 |
+
|
1046 |
+
# Prepare data
|
1047 |
+
X = df_clean[feature_cols]
|
1048 |
+
y = df_clean[target_col]
|
1049 |
+
|
1050 |
+
# Split data
|
1051 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
1052 |
+
X, y, test_size=test_size, random_state=random_state)
|
1053 |
+
|
1054 |
+
# Fit model
|
1055 |
+
model = LinearRegression()
|
1056 |
+
model.fit(X_train, y_train)
|
1057 |
+
|
1058 |
+
# Make predictions
|
1059 |
+
y_train_pred = model.predict(X_train)
|
1060 |
+
y_test_pred = model.predict(X_test)
|
1061 |
+
|
1062 |
+
# Calculate metrics
|
1063 |
+
metrics = {
|
1064 |
+
'train_r2': r2_score(y_train, y_train_pred),
|
1065 |
+
'test_r2': r2_score(y_test, y_test_pred),
|
1066 |
+
'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)),
|
1067 |
+
'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred))
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
# Create coefficient DataFrame
|
1071 |
+
coef_df = pd.DataFrame({
|
1072 |
+
'Feature': feature_cols,
|
1073 |
+
'Coefficient': model.coef_,
|
1074 |
+
'Absolute_Impact': np.abs(model.coef_)
|
1075 |
+
}).sort_values('Absolute_Impact', ascending=False)
|
1076 |
+
|
1077 |
+
# Create visualization if exactly 2 features are selected
|
1078 |
+
fig = None
|
1079 |
+
if len(feature_cols) == 2:
|
1080 |
+
fig = px.scatter_3d(
|
1081 |
+
df_clean.sample(min(1000, len(df_clean))),
|
1082 |
+
x=feature_cols[0],
|
1083 |
+
y=feature_cols[1],
|
1084 |
+
z=target_col,
|
1085 |
+
title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}',
|
1086 |
+
template="plotly_dark"
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
# Add regression plane
|
1090 |
+
x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20)
|
1091 |
+
y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20)
|
1092 |
+
x_grid, y_grid = np.meshgrid(x_range, y_range)
|
1093 |
+
|
1094 |
+
z_grid = (model.intercept_ +
|
1095 |
+
model.coef_[0] * x_grid +
|
1096 |
+
model.coef_[1] * y_grid)
|
1097 |
+
|
1098 |
+
fig.add_trace(go.Surface(
|
1099 |
+
x=x_grid,
|
1100 |
+
y=y_grid,
|
1101 |
+
z=z_grid,
|
1102 |
+
opacity=0.5,
|
1103 |
+
showscale=False
|
1104 |
+
))
|
1105 |
+
|
1106 |
+
return model, metrics, coef_df, fig
|
1107 |
+
|
1108 |
+
# Example usage:
|
1109 |
+
# Load your data
|
1110 |
+
df = pd.read_csv('your_data.csv')
|
1111 |
+
|
1112 |
+
# Define feature sets to try
|
1113 |
+
feature_sets = [
|
1114 |
+
['word_count', 'confidence_int'],
|
1115 |
+
['word_count', 'sentence_count', 'confidence_int'],
|
1116 |
+
['word_count', 'sentence_count', 'avg_word_length', 'avg_sentence_length', 'confidence_int']
|
1117 |
+
]
|
1118 |
+
|
1119 |
+
# Analyze each feature set
|
1120 |
+
for features in feature_sets:
|
1121 |
+
try:
|
1122 |
+
print(f"\nAnalyzing features: {features}")
|
1123 |
+
model, metrics, coef_df, fig = multiple_linear_regression(
|
1124 |
+
df, features, 'rating_int')
|
1125 |
+
|
1126 |
+
# Print metrics
|
1127 |
+
print("\nPerformance Metrics:")
|
1128 |
+
for metric, value in metrics.items():
|
1129 |
+
print(f"{metric}: {value:.3f}")
|
1130 |
+
|
1131 |
+
# Print coefficients
|
1132 |
+
print("\nFeature Coefficients:")
|
1133 |
+
print(coef_df)
|
1134 |
+
|
1135 |
+
# Show visualization if available
|
1136 |
+
if fig is not None:
|
1137 |
+
fig.show()
|
1138 |
|
1139 |
except Exception as e:
|
1140 |
+
print(f"Error analyzing features {features}: {str(e)}")
|
1141 |
+
''')
|
1142 |
+
|
1143 |
+
# Weekly Assignment
|
1144 |
+
username = st.session_state.get("username", "Student")
|
1145 |
+
st.header(f"{username}'s Weekly Assignment")
|
1146 |
+
|
1147 |
+
if username == "manxiii":
|
1148 |
+
st.markdown("""
|
1149 |
+
Hello **manxiii**, here is your Assignment 5: Machine Learning Analysis.
|
1150 |
+
1. Complete the feature engineering pipeline for the ICLR dataset
|
1151 |
+
2. Build both simple and multiple linear regression models
|
1152 |
+
3. Compare model performance and interpret results
|
1153 |
+
4. Submit your findings in a Jupyter notebook
|
1154 |
+
|
1155 |
+
**Due Date:** End of Week 5
|
1156 |
+
""")
|
1157 |
+
elif username == "zhu":
|
1158 |
+
st.markdown("""
|
1159 |
+
Hello **zhu**, here is your Assignment 5: Machine Learning Analysis.
|
1160 |
+
1. Implement the complete machine learning workflow
|
1161 |
+
2. Create insightful visualizations of model results
|
1162 |
+
3. Draw conclusions from your analysis
|
1163 |
+
4. Submit your work in a Jupyter notebook
|
1164 |
+
|
1165 |
+
**Due Date:** End of Week 5
|
1166 |
+
""")
|
1167 |
+
elif username == "WK":
|
1168 |
+
st.markdown("""
|
1169 |
+
Hello **WK**, here is your Assignment 5: Machine Learning Analysis.
|
1170 |
+
1. Complete the feature engineering pipeline
|
1171 |
+
2. Build and evaluate linear regression models
|
1172 |
+
3. Analyze patterns in the data
|
1173 |
+
4. Submit your findings
|
1174 |
+
|
1175 |
+
**Due Date:** End of Week 5
|
1176 |
+
""")
|
1177 |
+
else:
|
1178 |
+
st.markdown(f"""
|
1179 |
+
Hello **{username}**, here is your Assignment 5: Machine Learning Analysis.
|
1180 |
+
1. Complete the feature engineering pipeline
|
1181 |
+
2. Build and evaluate linear regression models
|
1182 |
+
3. Analyze patterns in the data
|
1183 |
+
4. Submit your findings
|
1184 |
+
|
1185 |
+
**Due Date:** End of Week 5
|
1186 |
+
""")
|