Spaces:
Running
Running
raymondEDS
commited on
Commit
·
b1b0b70
1
Parent(s):
1748447
Removing NLTK package
Browse files
app/__pycache__/main.cpython-311.pyc
CHANGED
Binary files a/app/__pycache__/main.cpython-311.pyc and b/app/__pycache__/main.cpython-311.pyc differ
|
|
app/pages/__pycache__/week_3.cpython-311.pyc
CHANGED
Binary files a/app/pages/__pycache__/week_3.cpython-311.pyc and b/app/pages/__pycache__/week_3.cpython-311.pyc differ
|
|
app/pages/__pycache__/week_4.cpython-311.pyc
CHANGED
Binary files a/app/pages/__pycache__/week_4.cpython-311.pyc and b/app/pages/__pycache__/week_4.cpython-311.pyc differ
|
|
app/pages/week_4.py
CHANGED
@@ -3,36 +3,34 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
import nltk
|
7 |
-
from nltk.corpus import stopwords
|
8 |
-
from nltk.tokenize import word_tokenize, sent_tokenize
|
9 |
-
nltk.download('punkt_tab')
|
10 |
-
nltk.download('stopwords')
|
11 |
-
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
12 |
from wordcloud import WordCloud
|
13 |
import string
|
14 |
import io
|
15 |
from contextlib import redirect_stdout
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
def
|
24 |
-
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
return f.getvalue()
|
36 |
|
37 |
def show():
|
38 |
st.title("Week 4: Introduction to Natural Language Processing")
|
@@ -79,9 +77,7 @@ def show():
|
|
79 |
)
|
80 |
|
81 |
if st.button("Tokenize Text"):
|
82 |
-
|
83 |
-
nltk.download('stopwords')
|
84 |
-
tokens = word_tokenize(example_text)
|
85 |
st.write("Tokens:", tokens)
|
86 |
st.write("Number of tokens:", len(tokens))
|
87 |
|
@@ -92,7 +88,7 @@ def show():
|
|
92 |
- Converting to lowercase
|
93 |
- Removing punctuation
|
94 |
- Removing stop words
|
95 |
-
-
|
96 |
""")
|
97 |
|
98 |
# Interactive Text Processing
|
@@ -111,9 +107,8 @@ def show():
|
|
111 |
|
112 |
with col1:
|
113 |
if st.button("Remove Stop Words"):
|
114 |
-
|
115 |
-
|
116 |
-
filtered_words = [word for word in words if word not in stop_words]
|
117 |
st.write("After removing stop words:", filtered_words)
|
118 |
|
119 |
with col2:
|
@@ -167,8 +162,6 @@ def show():
|
|
167 |
|
168 |
st.code("""
|
169 |
# Solution
|
170 |
-
import nltk
|
171 |
-
from nltk.corpus import stopwords
|
172 |
from wordcloud import WordCloud
|
173 |
import string
|
174 |
|
@@ -179,9 +172,8 @@ def show():
|
|
179 |
text = text.translate(str.maketrans('', '', string.punctuation))
|
180 |
|
181 |
# Remove stop words
|
182 |
-
|
183 |
-
|
184 |
-
filtered_words = [word for word in words if word.lower() not in stop_words]
|
185 |
|
186 |
# Create word cloud
|
187 |
wordcloud = WordCloud().generate(' '.join(filtered_words))
|
@@ -193,29 +185,32 @@ def show():
|
|
193 |
with st.expander("Exercise 2: Text Analysis"):
|
194 |
st.write("""
|
195 |
1. Calculate basic text metrics (word count, unique words)
|
196 |
-
2. Perform
|
197 |
3. Compare the results
|
198 |
4. Visualize the differences
|
199 |
""")
|
200 |
|
201 |
st.code("""
|
202 |
# Solution
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
-
# Sample
|
210 |
-
|
211 |
|
212 |
-
#
|
213 |
-
|
214 |
-
|
215 |
|
216 |
# Compare results
|
217 |
-
|
218 |
-
|
|
|
|
|
219 |
""")
|
220 |
|
221 |
username = st.session_state.get("username", "Student")
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from wordcloud import WordCloud
|
7 |
import string
|
8 |
import io
|
9 |
from contextlib import redirect_stdout
|
10 |
+
import re
|
11 |
|
12 |
+
# Define a simple list of common English stop words
|
13 |
+
STOP_WORDS = {
|
14 |
+
'a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from', 'has', 'he',
|
15 |
+
'in', 'is', 'it', 'its', 'of', 'on', 'that', 'the', 'to', 'was', 'were',
|
16 |
+
'will', 'with', 'the', 'this', 'but', 'they', 'have', 'had', 'what', 'when',
|
17 |
+
'where', 'who', 'which', 'why', 'how', 'all', 'any', 'both', 'each', 'few',
|
18 |
+
'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'can', 'will',
|
19 |
+
'just', 'should', 'now'
|
20 |
+
}
|
21 |
|
22 |
+
def simple_tokenize(text):
|
23 |
+
"""Simple tokenization function that splits on whitespace and removes punctuation"""
|
24 |
+
# Convert to lowercase
|
25 |
+
text = text.lower()
|
26 |
+
# Remove punctuation
|
27 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
28 |
+
# Split on whitespace
|
29 |
+
return text.split()
|
30 |
+
|
31 |
+
def remove_stop_words(tokens):
|
32 |
+
"""Remove stop words from a list of tokens"""
|
33 |
+
return [word for word in tokens if word.lower() not in STOP_WORDS]
|
|
|
34 |
|
35 |
def show():
|
36 |
st.title("Week 4: Introduction to Natural Language Processing")
|
|
|
77 |
)
|
78 |
|
79 |
if st.button("Tokenize Text"):
|
80 |
+
tokens = simple_tokenize(example_text)
|
|
|
|
|
81 |
st.write("Tokens:", tokens)
|
82 |
st.write("Number of tokens:", len(tokens))
|
83 |
|
|
|
88 |
- Converting to lowercase
|
89 |
- Removing punctuation
|
90 |
- Removing stop words
|
91 |
+
- Basic text normalization
|
92 |
""")
|
93 |
|
94 |
# Interactive Text Processing
|
|
|
107 |
|
108 |
with col1:
|
109 |
if st.button("Remove Stop Words"):
|
110 |
+
tokens = simple_tokenize(process_text)
|
111 |
+
filtered_words = remove_stop_words(tokens)
|
|
|
112 |
st.write("After removing stop words:", filtered_words)
|
113 |
|
114 |
with col2:
|
|
|
162 |
|
163 |
st.code("""
|
164 |
# Solution
|
|
|
|
|
165 |
from wordcloud import WordCloud
|
166 |
import string
|
167 |
|
|
|
172 |
text = text.translate(str.maketrans('', '', string.punctuation))
|
173 |
|
174 |
# Remove stop words
|
175 |
+
tokens = text.split()
|
176 |
+
filtered_words = [word for word in tokens if word.lower() not in STOP_WORDS]
|
|
|
177 |
|
178 |
# Create word cloud
|
179 |
wordcloud = WordCloud().generate(' '.join(filtered_words))
|
|
|
185 |
with st.expander("Exercise 2: Text Analysis"):
|
186 |
st.write("""
|
187 |
1. Calculate basic text metrics (word count, unique words)
|
188 |
+
2. Perform basic text normalization
|
189 |
3. Compare the results
|
190 |
4. Visualize the differences
|
191 |
""")
|
192 |
|
193 |
st.code("""
|
194 |
# Solution
|
195 |
+
def normalize_text(text):
|
196 |
+
# Convert to lowercase
|
197 |
+
text = text.lower()
|
198 |
+
# Remove punctuation
|
199 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
200 |
+
return text
|
201 |
|
202 |
+
# Sample text
|
203 |
+
text = "Running, runs, ran, better, good"
|
204 |
|
205 |
+
# Normalize text
|
206 |
+
normalized = normalize_text(text)
|
207 |
+
words = normalized.split()
|
208 |
|
209 |
# Compare results
|
210 |
+
print(f"Original: {text}")
|
211 |
+
print(f"Normalized: {normalized}")
|
212 |
+
print(f"Word count: {len(words)}")
|
213 |
+
print(f"Unique words: {len(set(words))}")
|
214 |
""")
|
215 |
|
216 |
username = st.session_state.get("username", "Student")
|