Spaces:
Build error
Build error
import gradio as gr | |
import os | |
import argparse | |
import time | |
from pathlib import Path | |
import cv2 | |
import torch | |
import torch.backends.cudnn as cudnn | |
from numpy import random | |
from models.experimental import attempt_load | |
from utils.datasets import LoadStreams, LoadImages | |
from utils.general import ( | |
check_img_size, | |
check_imshow, | |
non_max_suppression, | |
apply_classifier, | |
scale_coords, | |
xyxy2xywh, | |
set_logging, | |
increment_path, | |
) | |
from utils.plots import plot_one_box | |
from utils.torch_utils import ( | |
select_device, | |
load_classifier, | |
time_synchronized, | |
TracedModel, | |
) | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
def load_model(model_name): | |
model_path = hf_hub_download( | |
repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt" | |
) | |
return model_path | |
loaded_model = load_model("yolov7") | |
def detect(img): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--weights", nargs="+", type=str, default=loaded_model, help="model.pt path(s)" | |
) | |
parser.add_argument( | |
"--source", type=str, default="Inference/", help="source" | |
) # file/folder, 0 for webcam | |
parser.add_argument( | |
"--img-size", type=int, default=640, help="inference size (pixels)" | |
) | |
parser.add_argument( | |
"--conf-thres", type=float, default=0.25, help="object confidence threshold" | |
) | |
parser.add_argument( | |
"--iou-thres", type=float, default=0.45, help="IOU threshold for NMS" | |
) | |
parser.add_argument( | |
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument("--view-img", action="store_true", help="display results") | |
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") | |
parser.add_argument( | |
"--save-conf", action="store_true", help="save confidences in --save-txt labels" | |
) | |
parser.add_argument( | |
"--nosave", action="store_true", help="do not save images/videos" | |
) | |
parser.add_argument( | |
"--classes", | |
nargs="+", | |
type=int, | |
help="filter by class: --class 0, or --class 0 2 3", | |
) | |
parser.add_argument( | |
"--agnostic-nms", action="store_true", help="class-agnostic NMS" | |
) | |
parser.add_argument("--augment", action="store_true", help="augmented inference") | |
parser.add_argument("--update", action="store_true", help="update all models") | |
parser.add_argument( | |
"--project", default="runs/detect", help="save results to project/name" | |
) | |
parser.add_argument("--name", default="exp", help="save results to project/name") | |
parser.add_argument( | |
"--exist-ok", | |
action="store_true", | |
help="existing project/name ok, do not increment", | |
) | |
parser.add_argument("--trace", action="store_true", help="trace model") | |
opt = parser.parse_args() | |
img.save("Inference/test.jpg") | |
source, weights, view_img, save_txt, imgsz, trace = ( | |
opt.source, | |
opt.weights, | |
opt.view_img, | |
opt.save_txt, | |
opt.img_size, | |
opt.trace, | |
) | |
save_img = True # save inference images | |
webcam = ( | |
source.isnumeric() | |
or source.endswith(".txt") | |
or source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) | |
) | |
# Directories | |
save_dir = Path( | |
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) | |
) # increment run | |
(save_dir / "labels" if save_txt else save_dir).mkdir( | |
parents=True, exist_ok=True | |
) # make dir | |
# Initialize | |
set_logging() | |
device = select_device(opt.device) | |
half = device.type != "cpu" # half precision only supported on CUDA | |
# Load model | |
model = attempt_load(weights, map_location=device) # load FP32 model | |
stride = int(model.stride.max()) # model stride | |
imgsz = check_img_size(imgsz, s=stride) # check img_size | |
if trace: | |
model = TracedModel(model, device, opt.img_size) | |
if half: | |
model.half() # to FP16 | |
# Second-stage classifier | |
classify = False | |
if classify: | |
modelc = load_classifier(name="resnet101", n=2) # initialize | |
modelc.load_state_dict( | |
torch.load("weights/resnet101.pt", map_location=device)["model"] | |
).to(device).eval() | |
# Set Dataloader | |
vid_path, vid_writer = None, None | |
if webcam: | |
view_img = check_imshow() | |
cudnn.benchmark = True # set True to speed up constant image size inference | |
dataset = LoadStreams(source, img_size=imgsz, stride=stride) | |
else: | |
dataset = LoadImages(source, img_size=imgsz, stride=stride) | |
# Get names and colors | |
names = model.module.names if hasattr(model, "module") else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |
# Run inference | |
if device.type != "cpu": | |
model( | |
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())) | |
) # run once | |
t0 = time.time() | |
for path, img, im0s, vid_cap in dataset: | |
img = torch.from_numpy(img).to(device) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
t1 = time_synchronized() | |
pred = model(img, augment=opt.augment)[0] | |
# Apply NMS | |
pred = non_max_suppression( | |
pred, | |
opt.conf_thres, | |
opt.iou_thres, | |
classes=opt.classes, | |
agnostic=opt.agnostic_nms, | |
) | |
t2 = time_synchronized() | |
# Apply Classifier | |
if classify: | |
pred = apply_classifier(pred, modelc, img, im0s) | |
# Process detections | |
for i, det in enumerate(pred): # detections per image | |
if webcam: # batch_size >= 1 | |
p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count | |
else: | |
p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0) | |
p = Path(p) # to Path | |
save_path = str(save_dir / p.name) # img.jpg | |
txt_path = str(save_dir / "labels" / p.stem) + ( | |
"" if dataset.mode == "image" else f"_{frame}" | |
) # img.txt | |
s += "%gx%g " % img.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
# Print results | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() # detections per class | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
# Write results | |
for *xyxy, conf, cls in reversed(det): | |
if save_txt: # Write to file | |
xywh = ( | |
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn) | |
.view(-1) | |
.tolist() | |
) # normalized xywh | |
line = ( | |
(cls, *xywh, conf) if opt.save_conf else (cls, *xywh) | |
) # label format | |
with open(txt_path + ".txt", "a") as f: | |
f.write(("%g " * len(line)).rstrip() % line + "\n") | |
if save_img or view_img: # Add bbox to image | |
label = f"{names[int(cls)]} {conf:.2f}" | |
plot_one_box( | |
xyxy, | |
im0, | |
label=label, | |
color=colors[int(cls)], | |
line_thickness=3, | |
) | |
# Print time (inference + NMS) | |
# print(f'{s}Done. ({t2 - t1:.3f}s)') | |
# Stream results | |
if view_img: | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(1) # 1 millisecond | |
# Save results (image with detections) | |
if save_img: | |
if dataset.mode == "image": | |
cv2.imwrite(save_path, im0) | |
else: # 'video' or 'stream' | |
if vid_path != save_path: # new video | |
vid_path = save_path | |
if isinstance(vid_writer, cv2.VideoWriter): | |
vid_writer.release() # release previous video writer | |
if vid_cap: # video | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path += ".mp4" | |
vid_writer = cv2.VideoWriter( | |
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h) | |
) | |
vid_writer.write(im0) | |
if save_txt or save_img: | |
s = ( | |
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" | |
if save_txt | |
else "" | |
) | |
# print(f"Results saved to {save_dir}{s}") | |
print(f"Done. ({time.time() - t0:.3f}s)") | |
return Image.fromarray(im0[:, :, ::-1]) | |
gr.Interface( | |
detect, | |
[gr.Image(type="pil")], | |
gr.Image(type="pil"), | |
title="Anything Counter", | |
).launch(debug=True) | |