Spaces:
Sleeping
Sleeping
File size: 7,492 Bytes
3902a47 6686600 3902a47 787e7f5 3902a47 787e7f5 d18269d 87f056d d18269d 6ca32b7 d18269d 6ca32b7 228da02 d18269d ef1b87f d18269d 787e7f5 3902a47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import shlex
import subprocess
import spaces
import torch
import os
import gradio as gr
# install packages for mamba
def install_mamba():
#subprocess.run(shlex.split("pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118"))
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
#subprocess.run(shlex.split("pip install numpy==1.26.4"))
def clone_github():
subprocess.run([
"git", "clone",
f"https://RoyChao19477:{os.environ['GITHUB_TOKEN']}@github.com/RoyChao19477/for_HF_AVSEMamba.git"
])
install_mamba()
clone_github()
ABOUT = """
# SEMamba: Speech Enhancement
A Mamba-based model that denoises real-world audio.
Upload or record a noisy clip and click **Enhance** to hear + see its spectrogram.
"""
import torch
import yaml
import librosa
import librosa.display
import matplotlib
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from models.stfts import mag_phase_stft, mag_phase_istft
from models.generator import SEMamba
from models.pcs400 import cal_pcs
from ultralytics import YOLO
import supervision as sv
import gradio as gr
import cv2
import os
import tempfile
from ultralytics import YOLO
from moviepy import ImageSequenceClip
# Load face detector
model = YOLO("yolov8n-face.pt").cuda() # assumes CUDA available
@spaces.GPU
def extract_faces(video_file):
cap = cv2.VideoCapture(video_file)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# Inference
results = model(frame, verbose=False)[0]
for box in results.boxes:
# version 1
# x1, y1, x2, y2 = map(int, box.xyxy[0])
# version 2
h, w, _ = frame.shape
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
pad_ratio = 0.3 # 30% padding
dx = (x2 - x1) * pad_ratio
dy = (y2 - y1) * pad_ratio
x1 = int(max(0, x1 - dx))
y1 = int(max(0, y1 - dy))
x2 = int(min(w, x2 + dx))
y2 = int(min(h, y2 + dy))
face_crop = frame[y1:y2, x1:x2]
if face_crop.size != 0:
resized = cv2.resize(face_crop, (224, 224))
frames.append(resized)
break # only one face per frame
cap.release()
# Save as video
tmpdir = tempfile.mkdtemp()
output_path = os.path.join(tmpdir, "face_only_video.mp4")
clip = ImageSequenceClip([cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in frames], fps=25)
clip.write_videofile(output_path, codec="libx264", audio=False)
return output_path
iface = gr.Interface(
fn=extract_faces,
inputs=gr.Video(label="Upload or record your video"),
outputs=gr.Video(label="Detected Face Only Video"),
title="Face Detector",
description="Upload or record a video. We'll crop face regions and return a face-only video."
)
iface.launch()
ckpt = "ckpts/SEMamba_advanced.pth"
cfg_f = "recipes/SEMamba_advanced.yaml"
# load config
with open(cfg_f, 'r') as f:
cfg = yaml.safe_load(f)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
model = SEMamba(cfg).to(device)
#sdict = torch.load(ckpt, map_location=device)
#model.load_state_dict(sdict["generator"])
#model.eval()
@spaces.GPU
def enhance(filepath, model_name):
# Load model based on selection
ckpt_path = {
"VCTK-Demand": "ckpts/SEMamba_advanced.pth",
"VCTK+DNS": "ckpts/vd.pth"
}[model_name]
print("Loading:", ckpt_path)
model.load_state_dict(torch.load(ckpt_path, map_location=device)["generator"])
model.eval()
with torch.no_grad():
# load & resample
wav, orig_sr = librosa.load(filepath, sr=None)
noisy_wav = wav.copy()
if orig_sr != 16000:
wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=16000)
x = torch.from_numpy(wav).float().to(device)
norm = torch.sqrt(len(x)/torch.sum(x**2))
#x = (x * norm).unsqueeze(0)
x = (x * norm)
# split into 4s segments (64000 samples)
segment_len = 4 * 16000
chunks = x.split(segment_len)
enhanced_chunks = []
for chunk in chunks:
if len(chunk) < segment_len:
#pad = torch.zeros(segment_len - len(chunk), device=chunk.device)
pad = (torch.randn(segment_len - len(chunk), device=chunk.device) * 1e-4)
chunk = torch.cat([chunk, pad])
chunk = chunk.unsqueeze(0)
amp, pha, _ = mag_phase_stft(chunk, 400, 100, 400, 0.3)
amp2, pha2, _ = model(amp, pha)
out = mag_phase_istft(amp2, pha2, 400, 100, 400, 0.3)
out = (out / norm).squeeze(0)
enhanced_chunks.append(out)
out = torch.cat(enhanced_chunks)[:len(x)].cpu().numpy() # trim padding
# back to original rate
if orig_sr != 16000:
out = librosa.resample(out, orig_sr=16000, target_sr=orig_sr)
# Normalize
peak = np.max(np.abs(out))
if peak > 0.05:
out = out / peak * 0.85
# write file
sf.write("enhanced.wav", out, orig_sr)
# spectrograms
fig, axs = plt.subplots(1, 2, figsize=(16, 4))
# noisy
D_noisy = librosa.stft(noisy_wav, n_fft=512, hop_length=256)
S_noisy = librosa.amplitude_to_db(np.abs(D_noisy), ref=np.max)
librosa.display.specshow(S_noisy, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[0], vmax=0)
axs[0].set_title("Noisy Spectrogram")
# enhanced
D_clean = librosa.stft(out, n_fft=512, hop_length=256)
S_clean = librosa.amplitude_to_db(np.abs(D_clean), ref=np.max)
librosa.display.specshow(S_clean, sr=orig_sr, hop_length=256, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
#librosa.display.specshow(S_clean, sr=16000, hop_length=512, x_axis="time", y_axis="hz", ax=axs[1], vmax=0)
axs[1].set_title("Enhanced Spectrogram")
plt.tight_layout()
return "enhanced.wav", fig
#with gr.Blocks() as demo:
# gr.Markdown(ABOUT)
# input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
# enhance_btn = gr.Button("Enhance")
# output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
# plot_output = gr.Plot(label="Spectrograms")
#
# enhance_btn.click(fn=enhance, inputs=input_audio, outputs=[output_audio, plot_output])
#
#demo.queue().launch()
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
input_audio = gr.Audio(label="Input Audio", type="filepath", interactive=True)
model_choice = gr.Radio(
label="Choose Model (The use of VCTK+DNS is recommended)",
choices=["VCTK-Demand", "VCTK+DNS"],
value="VCTK-Demand"
)
enhance_btn = gr.Button("Enhance")
output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
plot_output = gr.Plot(label="Spectrograms")
enhance_btn.click(
fn=enhance,
inputs=[input_audio, model_choice],
outputs=[output_audio, plot_output]
)
gr.Markdown("**Note**: The current models are trained on 16kHz audio. Therefore, any input audio not sampled at 16kHz will be automatically resampled before enhancement.")
demo.queue().launch()
|