Spaces:
Sleeping
Sleeping
Update model_tools.py
Browse files- model_tools.py +57 -66
model_tools.py
CHANGED
@@ -1,66 +1,57 @@
|
|
1 |
-
# model_tools.py
|
2 |
-
|
3 |
-
import ollama
|
4 |
-
import requests
|
5 |
-
from bs4 import BeautifulSoup
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
"task": task_name,
|
59 |
-
"architecture": arch
|
60 |
-
})
|
61 |
-
|
62 |
-
return results
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Scraping error: {e}")
|
66 |
-
return []
|
|
|
1 |
+
# model_tools.py
|
2 |
+
|
3 |
+
import ollama
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# ---- LLM Task Extractor ----
|
9 |
+
|
10 |
+
# Load T5-based model once
|
11 |
+
task_extractor = pipeline("text2text-generation", model="google/flan-t5-small")
|
12 |
+
|
13 |
+
def extract_task(user_input):
|
14 |
+
prompt = f"Classify the following ML task: {user_input}. Just reply with the task name."
|
15 |
+
result = task_extractor(prompt, max_new_tokens=10)
|
16 |
+
return result[0]["generated_text"].strip().lower()
|
17 |
+
response = ollama.chat(
|
18 |
+
model="mistral", # Replace with llama3, phi3, etc. if needed
|
19 |
+
messages=[{"role": "user", "content": prompt}]
|
20 |
+
)
|
21 |
+
|
22 |
+
return response['message']['content'].strip().lower()
|
23 |
+
|
24 |
+
# ---- Hugging Face Scraper ----
|
25 |
+
|
26 |
+
def scrape_huggingface_models(task: str, max_results=5) -> list[dict]:
|
27 |
+
"""
|
28 |
+
Scrapes Hugging Face for top models for a given task.
|
29 |
+
"""
|
30 |
+
url = f"https://huggingface.co/models?pipeline_tag={task}&sort=downloads"
|
31 |
+
|
32 |
+
try:
|
33 |
+
resp = requests.get(url)
|
34 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
35 |
+
model_cards = soup.find_all("article", class_="model-card")[:max_results]
|
36 |
+
|
37 |
+
results = []
|
38 |
+
for card in model_cards:
|
39 |
+
name_tag = card.find("a", class_="model-link")
|
40 |
+
model_name = name_tag.text.strip() if name_tag else "unknown"
|
41 |
+
|
42 |
+
task_div = card.find("div", class_="task-tag")
|
43 |
+
task_name = task_div.text.strip() if task_div else task
|
44 |
+
|
45 |
+
arch = "encoder-decoder" if "bart" in model_name.lower() or "t5" in model_name.lower() else "unknown"
|
46 |
+
|
47 |
+
results.append({
|
48 |
+
"model_name": model_name,
|
49 |
+
"task": task_name,
|
50 |
+
"architecture": arch
|
51 |
+
})
|
52 |
+
|
53 |
+
return results
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Scraping error: {e}")
|
57 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|