Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
import nltk | |
nltk.download('punkt', quiet=True) | |
from nltk.tokenize import sent_tokenize | |
def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id) | |
video = VideoFileClip(video_file) | |
audio = video.audio | |
duration = audio.duration | |
chunk_duration = 60 | |
n_chunks = int(np.ceil(duration / chunk_duration)) | |
full_transcription = "" | |
for i in range(n_chunks): | |
start_time = i * chunk_duration | |
end_time = min((i + 1) * chunk_duration, duration) | |
audio_chunk = audio.subclip(start_time, end_time) | |
temp_file_path = f"temp_audio_chunk_{i}.wav" | |
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le') | |
sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000) | |
if sound_array.ndim > 1: | |
sound_array = np.mean(sound_array, axis=1) | |
input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features | |
input_features = input_features.to(device=device, dtype=torch_dtype) | |
with torch.no_grad(): | |
if target_language: | |
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language, | |
task="transcribe") | |
generated_ids = model.generate(input_features, max_length=448) | |
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
full_transcription += transcription + " " | |
os.remove(temp_file_path) | |
print(f"Processed chunk {i + 1}/{n_chunks}") | |
# Split the transcription into sentences | |
sentences = sent_tokenize(full_transcription.strip()) | |
# Estimate time for each sentence based on its length relative to the total transcription | |
total_chars = sum(len(s) for s in sentences) | |
sentence_times = [] | |
current_time = 0 | |
for sentence in sentences: | |
sentence_duration = (len(sentence) / total_chars) * duration | |
sentence_times.append((current_time, current_time + sentence_duration)) | |
current_time += sentence_duration | |
output = "" | |
if transcribe_to_text: | |
output += "Text Transcription:\n" + full_transcription + "\n\n" | |
if transcribe_to_srt: | |
output += "SRT Transcription:\n" | |
for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1): | |
output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n" | |
return output | |
def format_time(seconds): | |
m, s = divmod(seconds, 60) | |
h, m = divmod(m, 60) | |
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',') |