Update video_processing.py
Browse files- video_processing.py +3 -5
video_processing.py
CHANGED
@@ -15,7 +15,7 @@ import pandas as pd
|
|
15 |
from facenet_pytorch import MTCNN
|
16 |
import torch
|
17 |
import mediapipe as mp
|
18 |
-
from voice_analysis import process_audio
|
19 |
from pydub import AudioSegment
|
20 |
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -167,13 +167,11 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
|
|
167 |
video.export(audio_path, format="wav")
|
168 |
|
169 |
# Process audio
|
170 |
-
|
171 |
-
voice_clusters = cluster_voices(voice_embeddings)
|
172 |
-
most_frequent_voice = get_most_frequent_voice(voice_embeddings, voice_clusters)
|
173 |
|
174 |
# Perform anomaly detection on voice
|
175 |
X_voice = np.array(most_frequent_voice)
|
176 |
-
mse_voice = anomaly_detection(X_voice, X_voice)
|
177 |
|
178 |
|
179 |
progress(0.95, "Generating plots")
|
|
|
15 |
from facenet_pytorch import MTCNN
|
16 |
import torch
|
17 |
import mediapipe as mp
|
18 |
+
from voice_analysis import process_audio
|
19 |
from pydub import AudioSegment
|
20 |
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
167 |
video.export(audio_path, format="wav")
|
168 |
|
169 |
# Process audio
|
170 |
+
most_frequent_voice, voice_features, voice_clusters = process_audio(audio_path)
|
|
|
|
|
171 |
|
172 |
# Perform anomaly detection on voice
|
173 |
X_voice = np.array(most_frequent_voice)
|
174 |
+
mse_voice = anomaly_detection(X_voice, X_voice)
|
175 |
|
176 |
|
177 |
progress(0.95, "Generating plots")
|