Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,12 +15,13 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
| 15 |
|
| 16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
| 17 |
print(f"Error occurred: {results[0]}")
|
| 18 |
-
return [results[0]] + [None] *
|
| 19 |
|
| 20 |
-
exec_time, results_summary, df, mse_embeddings, mse_posture, \
|
| 21 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
| 22 |
mse_plot_posture, mse_histogram_posture, \
|
| 23 |
-
|
|
|
|
| 24 |
face_samples_frequent, \
|
| 25 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
| 26 |
aligned_faces_folder, frames_folder, \
|
|
@@ -33,14 +34,14 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
| 33 |
|
| 34 |
output = [
|
| 35 |
exec_time, results_summary,
|
| 36 |
-
df, mse_embeddings, mse_posture,
|
| 37 |
-
mse_plot_embeddings, mse_plot_posture,
|
| 38 |
-
mse_histogram_embeddings, mse_histogram_posture,
|
| 39 |
-
mse_heatmap_embeddings, mse_heatmap_posture,
|
| 40 |
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
| 41 |
face_samples_frequent,
|
| 42 |
aligned_faces_folder, frames_folder,
|
| 43 |
-
mse_embeddings, mse_posture,
|
| 44 |
heatmap_video_path
|
| 45 |
]
|
| 46 |
|
|
@@ -51,14 +52,14 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
| 51 |
print(error_message)
|
| 52 |
import traceback
|
| 53 |
traceback.print_exc()
|
| 54 |
-
return [error_message] + [None] *
|
| 55 |
|
| 56 |
with gr.Blocks() as iface:
|
| 57 |
gr.Markdown("""
|
| 58 |
# Multimodal Behavioral Anomalies Detection
|
| 59 |
|
| 60 |
-
This tool detects anomalies in facial expressions
|
| 61 |
-
It extracts faces and
|
| 62 |
""")
|
| 63 |
|
| 64 |
with gr.Row():
|
|
@@ -86,30 +87,37 @@ with gr.Blocks() as iface:
|
|
| 86 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
| 87 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with gr.Tab("Video with Heatmap"):
|
| 90 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
| 91 |
|
| 92 |
df_store = gr.State()
|
| 93 |
mse_features_store = gr.State()
|
| 94 |
mse_posture_store = gr.State()
|
|
|
|
| 95 |
aligned_faces_folder_store = gr.State()
|
| 96 |
frames_folder_store = gr.State()
|
| 97 |
mse_heatmap_embeddings_store = gr.State()
|
| 98 |
mse_heatmap_posture_store = gr.State()
|
|
|
|
| 99 |
|
| 100 |
process_btn.click(
|
| 101 |
process_and_show_completion,
|
| 102 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
| 103 |
outputs=[
|
| 104 |
execution_time, results_text, df_store,
|
| 105 |
-
mse_features_store, mse_posture_store,
|
| 106 |
-
mse_features_plot, mse_posture_plot,
|
| 107 |
-
mse_features_hist, mse_posture_hist,
|
| 108 |
-
mse_features_heatmap, mse_posture_heatmap,
|
| 109 |
anomaly_frames_features, anomaly_frames_posture,
|
| 110 |
face_samples_most_frequent,
|
| 111 |
aligned_faces_folder_store, frames_folder_store,
|
| 112 |
-
mse_heatmap_embeddings_store, mse_heatmap_posture_store,
|
| 113 |
heatmap_video
|
| 114 |
]
|
| 115 |
).then(
|
|
|
|
| 15 |
|
| 16 |
if isinstance(results[0], str) and results[0].startswith("Error"):
|
| 17 |
print(f"Error occurred: {results[0]}")
|
| 18 |
+
return [results[0]] + [None] * 23 # Increased number of None values
|
| 19 |
|
| 20 |
+
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
|
| 21 |
mse_plot_embeddings, mse_histogram_embeddings, \
|
| 22 |
mse_plot_posture, mse_histogram_posture, \
|
| 23 |
+
mse_plot_voice, mse_histogram_voice, \
|
| 24 |
+
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
|
| 25 |
face_samples_frequent, \
|
| 26 |
anomaly_faces_embeddings, anomaly_frames_posture_images, \
|
| 27 |
aligned_faces_folder, frames_folder, \
|
|
|
|
| 34 |
|
| 35 |
output = [
|
| 36 |
exec_time, results_summary,
|
| 37 |
+
df, mse_embeddings, mse_posture, mse_voice,
|
| 38 |
+
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
|
| 39 |
+
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
|
| 40 |
+
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
|
| 41 |
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
|
| 42 |
face_samples_frequent,
|
| 43 |
aligned_faces_folder, frames_folder,
|
| 44 |
+
mse_embeddings, mse_posture, mse_voice,
|
| 45 |
heatmap_video_path
|
| 46 |
]
|
| 47 |
|
|
|
|
| 52 |
print(error_message)
|
| 53 |
import traceback
|
| 54 |
traceback.print_exc()
|
| 55 |
+
return [error_message] + [None] * 23 # Increased number of None values
|
| 56 |
|
| 57 |
with gr.Blocks() as iface:
|
| 58 |
gr.Markdown("""
|
| 59 |
# Multimodal Behavioral Anomalies Detection
|
| 60 |
|
| 61 |
+
This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
|
| 62 |
+
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
|
| 63 |
""")
|
| 64 |
|
| 65 |
with gr.Row():
|
|
|
|
| 87 |
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
|
| 88 |
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
|
| 89 |
|
| 90 |
+
with gr.Tab("Voice"):
|
| 91 |
+
mse_voice_plot = gr.Plot(label="MSE: Voice")
|
| 92 |
+
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
|
| 93 |
+
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
|
| 94 |
+
|
| 95 |
with gr.Tab("Video with Heatmap"):
|
| 96 |
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
|
| 97 |
|
| 98 |
df_store = gr.State()
|
| 99 |
mse_features_store = gr.State()
|
| 100 |
mse_posture_store = gr.State()
|
| 101 |
+
mse_voice_store = gr.State()
|
| 102 |
aligned_faces_folder_store = gr.State()
|
| 103 |
frames_folder_store = gr.State()
|
| 104 |
mse_heatmap_embeddings_store = gr.State()
|
| 105 |
mse_heatmap_posture_store = gr.State()
|
| 106 |
+
mse_heatmap_voice_store = gr.State()
|
| 107 |
|
| 108 |
process_btn.click(
|
| 109 |
process_and_show_completion,
|
| 110 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
| 111 |
outputs=[
|
| 112 |
execution_time, results_text, df_store,
|
| 113 |
+
mse_features_store, mse_posture_store, mse_voice_store,
|
| 114 |
+
mse_features_plot, mse_posture_plot, mse_voice_plot,
|
| 115 |
+
mse_features_hist, mse_posture_hist, mse_voice_hist,
|
| 116 |
+
mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
|
| 117 |
anomaly_frames_features, anomaly_frames_posture,
|
| 118 |
face_samples_most_frequent,
|
| 119 |
aligned_faces_folder_store, frames_folder_store,
|
| 120 |
+
mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
|
| 121 |
heatmap_video
|
| 122 |
]
|
| 123 |
).then(
|