File size: 5,332 Bytes
9deffb0
a08b017
 
 
 
 
 
 
 
 
4ee6f09
9deffb0
a08b017
156337d
 
 
a08b017
 
156337d
a08b017
 
156337d
 
a08b017
 
 
 
 
 
 
156337d
 
a08b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d98195
a08b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d98195
 
a08b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d98195
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import torch
import math
from moviepy.editor import VideoFileClip, AudioFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import datetime
from collections import defaultdict
import numpy as np
import spaces

class LazyDiarizationPipeline:
    def __init__(self):
        self.pipeline = None

    @spaces.GPU(duration=120)
    def get_pipeline(self, diarization_access_token):
        if self.pipeline is None:
            self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=diarization_access_token)
            self.pipeline = self.pipeline.to(torch.device("cuda"))
        return self.pipeline

lazy_diarization_pipeline = LazyDiarizationPipeline()

class LazyTranscriptionPipeline:
    def __init__(self):
        self.model = None
        self.processor = None
        self.pipe = None

    @spaces.GPU(duration=120)
    def get_pipeline(self, language):
        if self.pipe is None:
            model_id = "openai/whisper-large-v3"
            self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
                model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
            )
            self.model.to(torch.device("cuda"))
            self.processor = AutoProcessor.from_pretrained(model_id)
            self.pipe = pipeline(
                "automatic-speech-recognition",
                model=self.model,
                tokenizer=self.processor.tokenizer,
                feature_extractor=self.processor.feature_extractor,
                chunk_length_s=30,
                return_timestamps=True,
                device=torch.device("cuda")
            )
        return self.pipe

lazy_transcription_pipeline = LazyTranscriptionPipeline()

def extract_audio(video_path, audio_path):
    video = VideoFileClip(video_path)
    audio = video.audio
    audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)

def format_timestamp(seconds):
    return str(datetime.timedelta(seconds=seconds)).split('.')[0]

@spaces.GPU(duration=100)
def transcribe_audio(audio_path, language):
    pipe = lazy_transcription_pipeline.get_pipeline(language)

    audio, sr = librosa.load(audio_path, sr=16000)
    duration = len(audio) / sr
    n_chunks = math.ceil(duration / 30)
    transcription_txt = ""
    transcription_chunks = []

    for i in range(n_chunks):
        start = i * 30 * sr
        end = min((i + 1) * 30 * sr, len(audio))
        audio_chunk = audio[start:end]

        result = pipe(audio_chunk)
        transcription_txt += result["text"]
        for chunk in result["chunks"]:
            start_time, end_time = chunk["timestamp"]
            transcription_chunks.append({
                "start": start_time + i * 30,
                "end": end_time + i * 30,
                "text": chunk["text"]
            })

    return transcription_txt, transcription_chunks

def create_combined_srt(transcription_chunks, diarization, output_path):
    speaker_segments = []
    speaker_map = {}
    current_speaker_num = 1

    for segment, _, speaker in diarization.itertracks(yield_label=True):
        if speaker not in speaker_map:
            speaker_map[speaker] = f"Speaker {current_speaker_num}"
            current_speaker_num += 1
        speaker_segments.append((segment.start, segment.end, speaker_map[speaker]))

    with open(output_path, 'w', encoding='utf-8') as srt_file:
        for i, chunk in enumerate(transcription_chunks, 1):
            start_time, end_time = chunk["start"], chunk["end"]
            text = chunk["text"]

            current_speaker = "Unknown"
            for seg_start, seg_end, speaker in speaker_segments:
                if seg_start <= start_time < seg_end:
                    current_speaker = speaker
                    break

            start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
            end_str = format_timestamp(end_time).split('.')[0].lstrip('0')

            srt_file.write(f"{i}\n")
            srt_file.write(f"{start_str} --> {end_str}\n")
            srt_file.write(f"{current_speaker}: {text}\n\n")

    speaker_durations = defaultdict(float)
    for seg_start, seg_end, speaker in speaker_segments:
        speaker_durations[speaker] += seg_end - seg_start

    dominant_speaker = max(speaker_durations, key=speaker_durations.get)
    dominant_duration = speaker_durations[dominant_speaker]

    with open(output_path, 'a', encoding='utf-8') as srt_file:
        dominant_duration_str = format_timestamp(dominant_duration).split('.')[0].lstrip('0')
        srt_file.write(f"\nMost dominant speaker: {dominant_speaker} with total duration {dominant_duration_str}\n")

@spaces.GPU(duration=100)
def process_video(video_path, diarization_access_token, language):
    base_name = os.path.splitext(video_path)[0]
    audio_path = f"{base_name}.wav"
    extract_audio(video_path, audio_path)

    pipeline = lazy_diarization_pipeline.get_pipeline(diarization_access_token)
    diarization = pipeline(audio_path)

    transcription, chunks = transcribe_audio(audio_path, language)

    combined_srt_path = f"{base_name}_combined.srt"
    create_combined_srt(chunks, diarization, combined_srt_path)

    os.remove(audio_path)

    return combined_srt_path