File size: 5,727 Bytes
9deffb0
a08b017
 
385f1b4
a08b017
 
 
 
 
 
4ee6f09
9deffb0
a08b017
156337d
 
 
736bb4c
a08b017
156337d
a08b017
 
156337d
 
a08b017
 
 
 
 
156337d
736bb4c
a08b017
 
 
 
 
 
 
 
 
 
 
 
 
b9f27c7
a08b017
9bcacb7
a08b017
b9f27c7
 
 
a08b017
 
 
385f1b4
a08b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f27c7
 
a08b017
 
 
 
 
 
 
 
 
 
b9f27c7
 
a08b017
 
 
 
9421df7
a08b017
 
9421df7
 
 
 
 
 
 
 
a08b017
 
 
 
 
 
 
 
 
9421df7
a08b017
 
 
 
 
 
123e28e
a08b017
9421df7
 
 
 
 
a08b017
 
 
 
 
 
b9f27c7
a08b017
 
b9f27c7
a08b017
b9f27c7
a08b017
b9f27c7
a08b017
 
 
b9f27c7
a08b017
 
 
b9f27c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import torch
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import datetime
from collections import defaultdict
import numpy as np
import spaces

class LazyDiarizationPipeline:
    def __init__(self):
        self.pipeline = None

    @spaces.GPU(duration=100)
    def get_pipeline(self, diarization_access_token):
        if self.pipeline is None:
            self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=diarization_access_token)
            self.pipeline = self.pipeline.to(torch.device("cuda"))
        return self.pipeline

class LazyTranscriptionPipeline:
    def __init__(self):
        self.model = None
        self.processor = None
        self.pipe = None

    @spaces.GPU(duration=100)
    def get_pipeline(self, language):
        if self.pipe is None:
            model_id = "openai/whisper-large-v3"
            self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
                model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
            )
            self.model.to(torch.device("cuda"))
            self.processor = AutoProcessor.from_pretrained(model_id)
            self.pipe = pipeline(
                "automatic-speech-recognition",
                model=self.model,
                tokenizer=self.processor.tokenizer,
                feature_extractor=self.processor.feature_extractor,
                max_new_tokens=128,
                chunk_length_s=30,
                batch_size=2,
                return_timestamps=True,
                torch_dtype=torch.float16,
                device=torch.device("cuda"),
                generate_kwargs={"language": language}
            )
        return self.pipe

lazy_diarization_pipeline = LazyDiarizationPipeline()
lazy_transcription_pipeline = LazyTranscriptionPipeline()

def extract_audio(video_path, audio_path):
    video = VideoFileClip(video_path)
    audio = video.audio
    audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)

def format_timestamp(seconds):
    return str(datetime.timedelta(seconds=seconds)).split('.')[0]

@spaces.GPU(duration=100)
def transcribe_audio(audio_path, language):
    pipe = lazy_transcription_pipeline.get_pipeline(language)

    audio, sr = librosa.load(audio_path, sr=16000)
    duration = len(audio) / sr
    n_chunks = math.ceil(duration / 30)
    transcription_txt = ""
    transcription_chunks = []

    for i in range(n_chunks):
        start = i * 30 * sr
        end = min((i + 1) * 30 * sr, len(audio))
        audio_chunk = audio[start:end]
        audio_chunk = (audio_chunk * 32767).astype(np.float32)

        result = pipe(audio_chunk)
        transcription_txt += result["text"]
        for chunk in result["chunks"]:
            start_time, end_time = chunk["timestamp"]
            transcription_chunks.append({
                "start": start_time + i * 30,
                "end": end_time + i * 30,
                "text": chunk["text"]
            })

        print(f"Transcription Progress: {int(((i + 1) / n_chunks) * 100)}%")

    return transcription_txt, transcription_chunks

def create_combined_srt(transcription_chunks, diarization, output_path):
    speaker_segments = []
    speaker_durations = defaultdict(float)

    for segment, _, speaker in diarization.itertracks(yield_label=True):
        speaker_durations[speaker] += segment.end - segment.start
        speaker_segments.append((segment.start, segment.end, speaker))

    sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)
    
    speaker_map = {}
    for i, (speaker, _) in enumerate(sorted_speakers, start=1):
        speaker_map[speaker] = f"Speaker {i}"

    with open(output_path, 'w', encoding='utf-8') as srt_file:
        for i, chunk in enumerate(transcription_chunks, 1):
            start_time, end_time = chunk["start"], chunk["end"]
            text = chunk["text"]

            current_speaker = "Unknown"
            for seg_start, seg_end, speaker in speaker_segments:
                if seg_start <= start_time < seg_end:
                    current_speaker = speaker_map[speaker]
                    break

            start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
            end_str = format_timestamp(end_time).split('.')[0].lstrip('0')

            srt_file.write(f"{i}\n")
            srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")

    with open(output_path, 'a', encoding='utf-8') as srt_file:
        for i, (speaker, duration) in enumerate(sorted_speakers[:2], start=1):
            duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
            srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")

@spaces.GPU(duration=100)
def process_video(video_path, diarization_access_token, language):
    base_name = os.path.splitext(video_path)[0]
    audio_path = f"{base_name}.wav"
    extract_audio(video_path, audio_path)

    print("Performing diarization...")
    pipeline = lazy_diarization_pipeline.get_pipeline(diarization_access_token)
    diarization = pipeline(audio_path)
    print("Diarization complete.")

    print("Performing transcription...")
    transcription, chunks = transcribe_audio(audio_path, language)
    print("Transcription complete.")

    combined_srt_path = f"{base_name}_combined.srt"
    create_combined_srt(chunks, diarization, combined_srt_path)
    print(f"Combined SRT file created and saved to {combined_srt_path}")

    os.remove(audio_path)

    return combined_srt_path