Spaces:
Runtime error
Runtime error
File size: 5,727 Bytes
9deffb0 a08b017 385f1b4 a08b017 4ee6f09 9deffb0 a08b017 156337d 736bb4c a08b017 156337d a08b017 156337d a08b017 156337d 736bb4c a08b017 b9f27c7 a08b017 9bcacb7 a08b017 b9f27c7 a08b017 385f1b4 a08b017 b9f27c7 a08b017 b9f27c7 a08b017 9421df7 a08b017 9421df7 a08b017 9421df7 a08b017 123e28e a08b017 9421df7 a08b017 b9f27c7 a08b017 b9f27c7 a08b017 b9f27c7 a08b017 b9f27c7 a08b017 b9f27c7 a08b017 b9f27c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import torch
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import datetime
from collections import defaultdict
import numpy as np
import spaces
class LazyDiarizationPipeline:
def __init__(self):
self.pipeline = None
@spaces.GPU(duration=100)
def get_pipeline(self, diarization_access_token):
if self.pipeline is None:
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=diarization_access_token)
self.pipeline = self.pipeline.to(torch.device("cuda"))
return self.pipeline
class LazyTranscriptionPipeline:
def __init__(self):
self.model = None
self.processor = None
self.pipe = None
@spaces.GPU(duration=100)
def get_pipeline(self, language):
if self.pipe is None:
model_id = "openai/whisper-large-v3"
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
)
self.model.to(torch.device("cuda"))
self.processor = AutoProcessor.from_pretrained(model_id)
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=2,
return_timestamps=True,
torch_dtype=torch.float16,
device=torch.device("cuda"),
generate_kwargs={"language": language}
)
return self.pipe
lazy_diarization_pipeline = LazyDiarizationPipeline()
lazy_transcription_pipeline = LazyTranscriptionPipeline()
def extract_audio(video_path, audio_path):
video = VideoFileClip(video_path)
audio = video.audio
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)
def format_timestamp(seconds):
return str(datetime.timedelta(seconds=seconds)).split('.')[0]
@spaces.GPU(duration=100)
def transcribe_audio(audio_path, language):
pipe = lazy_transcription_pipeline.get_pipeline(language)
audio, sr = librosa.load(audio_path, sr=16000)
duration = len(audio) / sr
n_chunks = math.ceil(duration / 30)
transcription_txt = ""
transcription_chunks = []
for i in range(n_chunks):
start = i * 30 * sr
end = min((i + 1) * 30 * sr, len(audio))
audio_chunk = audio[start:end]
audio_chunk = (audio_chunk * 32767).astype(np.float32)
result = pipe(audio_chunk)
transcription_txt += result["text"]
for chunk in result["chunks"]:
start_time, end_time = chunk["timestamp"]
transcription_chunks.append({
"start": start_time + i * 30,
"end": end_time + i * 30,
"text": chunk["text"]
})
print(f"Transcription Progress: {int(((i + 1) / n_chunks) * 100)}%")
return transcription_txt, transcription_chunks
def create_combined_srt(transcription_chunks, diarization, output_path):
speaker_segments = []
speaker_durations = defaultdict(float)
for segment, _, speaker in diarization.itertracks(yield_label=True):
speaker_durations[speaker] += segment.end - segment.start
speaker_segments.append((segment.start, segment.end, speaker))
sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)
speaker_map = {}
for i, (speaker, _) in enumerate(sorted_speakers, start=1):
speaker_map[speaker] = f"Speaker {i}"
with open(output_path, 'w', encoding='utf-8') as srt_file:
for i, chunk in enumerate(transcription_chunks, 1):
start_time, end_time = chunk["start"], chunk["end"]
text = chunk["text"]
current_speaker = "Unknown"
for seg_start, seg_end, speaker in speaker_segments:
if seg_start <= start_time < seg_end:
current_speaker = speaker_map[speaker]
break
start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
end_str = format_timestamp(end_time).split('.')[0].lstrip('0')
srt_file.write(f"{i}\n")
srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")
with open(output_path, 'a', encoding='utf-8') as srt_file:
for i, (speaker, duration) in enumerate(sorted_speakers[:2], start=1):
duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")
@spaces.GPU(duration=100)
def process_video(video_path, diarization_access_token, language):
base_name = os.path.splitext(video_path)[0]
audio_path = f"{base_name}.wav"
extract_audio(video_path, audio_path)
print("Performing diarization...")
pipeline = lazy_diarization_pipeline.get_pipeline(diarization_access_token)
diarization = pipeline(audio_path)
print("Diarization complete.")
print("Performing transcription...")
transcription, chunks = transcribe_audio(audio_path, language)
print("Transcription complete.")
combined_srt_path = f"{base_name}_combined.srt"
create_combined_srt(chunks, diarization, combined_srt_path)
print(f"Combined SRT file created and saved to {combined_srt_path}")
os.remove(audio_path)
return combined_srt_path |