Spaces:
Runtime error
Runtime error
File size: 6,537 Bytes
9deffb0 a08b017 1f8fc17 a08b017 385f1b4 a08b017 e3551a8 a08b017 9deffb0 a08b017 156337d e3551a8 156337d e3551a8 156337d e3551a8 987653b 156337d e3551a8 a08b017 e3551a8 156337d e3551a8 a08b017 234ccee e3551a8 a08b017 e3551a8 a08b017 e3551a8 a08b017 9cee20d a08b017 e3551a8 a08b017 e3551a8 385f1b4 a08b017 e3551a8 a08b017 e3551a8 a08b017 b9f27c7 e3551a8 a08b017 e3551a8 a08b017 e3551a8 a08b017 9421df7 a08b017 9421df7 11fa897 e3551a8 9421df7 8492e05 a08b017 8492e05 a08b017 123e28e a08b017 9421df7 8492e05 9421df7 e3551a8 a08b017 e3551a8 a08b017 1f8fc17 987653b 1f8fc17 e3551a8 a08b017 1f8fc17 987653b 1f8fc17 a08b017 11fa897 a08b017 1f8fc17 987653b 1f8fc17 e3551a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import torch
import gc
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import soundfile as sf
import datetime
from collections import defaultdict
import numpy as np
class LazyDiarizationPipeline:
def __init__(self):
self.pipeline = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_pipeline(self, hf_token):
if self.pipeline is None:
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1",
use_auth_token=hf_token)
self.pipeline = self.pipeline.to(self.device)
torch.cuda.empty_cache()
gc.collect()
return self.pipeline
class LazyTranscriptionPipeline:
def __init__(self):
self.model = None
self.processor = None
self.pipe = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_pipeline(self):
if self.pipe is None:
model_id = "openai/whisper-large-v3"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
self.model.to(self.device)
self.processor = AutoProcessor.from_pretrained(model_id)
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
chunk_length_s=30,
return_timestamps=True,
device=self.device
)
return self.pipe
lazy_diarization_pipeline = LazyDiarizationPipeline()
lazy_transcription_pipeline = LazyTranscriptionPipeline()
def extract_audio(video_path, audio_path):
video = VideoFileClip(video_path)
audio = video.audio
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)
def format_timestamp(seconds):
return str(datetime.timedelta(seconds=seconds)).split('.')[0]
def transcribe_audio(audio_path, language):
pipe = lazy_transcription_pipeline.get_pipeline()
audio, sr = librosa.load(audio_path, sr=16000)
duration = len(audio) / sr
n_chunks = math.ceil(duration / 30)
transcription_txt = ""
transcription_chunks = []
for i in range(n_chunks):
start = i * 30 * sr
end = min((i + 1) * 30 * sr, len(audio))
audio_chunk = audio[start:end]
audio_chunk = (audio_chunk * 32767).astype(np.float32)
result = pipe(audio_chunk, generate_kwargs={"language": language, "task": "transcribe"})
transcription_txt += result["text"]
for chunk in result["chunks"]:
start_time, end_time = chunk["timestamp"]
if start_time is None:
start_time = 0
if end_time is None:
end_time = 0
transcription_chunks.append({
"start": start_time + i * 30,
"end": end_time + i * 30,
"text": chunk["text"]
})
return transcription_txt, transcription_chunks
def diarize_audio(audio_path, pipeline, max_speakers):
# Load the entire audio file
audio, sr = librosa.load(audio_path, sr=16000)
# Write the audio to a temporary file if needed for the pipeline
temp_audio_path = f"{audio_path}_temp.wav"
sf.write(temp_audio_path, audio, sr)
# Perform speaker diarization on the entire audio file
diarization = pipeline(temp_audio_path, num_speakers=max_speakers)
# Clean up the temporary file
os.remove(temp_audio_path)
torch.cuda.empty_cache()
gc.collect()
return diarization
def create_combined_srt(transcription_chunks, diarization, output_path, max_speakers):
speaker_segments = []
speaker_durations = defaultdict(float)
for segment, _, speaker in diarization.itertracks(yield_label=True):
speaker_durations[speaker] += segment.end - segment.start
speaker_segments.append((segment.start, segment.end, speaker))
sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)[:max_speakers]
speaker_map = {}
for i, (speaker, _) in enumerate(sorted_speakers, start=1):
speaker_map[speaker] = f"Speaker {i}"
with open(output_path, 'w', encoding='utf-8') as srt_file:
for i, chunk in enumerate(transcription_chunks, 1):
start_time, end_time = chunk["start"], chunk["end"]
text = chunk["text"]
current_speaker = "Unknown"
for seg_start, seg_end, speaker in speaker_segments:
if seg_start <= start_time < seg_end:
current_speaker = speaker_map.get(speaker, "Unknown")
break
start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
end_str = format_timestamp(end_time).split('.')[0].lstrip('0')
srt_file.write(f"{i}\n")
srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")
with open(output_path, 'a', encoding='utf-8') as srt_file:
for i, (speaker, duration) in enumerate(sorted_speakers, start=1):
duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")
def process_video(video_path, hf_token, language, max_speakers=3):
base_name = os.path.splitext(video_path)[0]
audio_path = f"{base_name}.wav"
extract_audio(video_path, audio_path)
pipeline = lazy_diarization_pipeline.get_pipeline(hf_token)
diarization = diarize_audio(audio_path, pipeline, max_speakers)
# Clear GPU memory after diarization
torch.cuda.empty_cache()
gc.collect()
transcription, chunks = transcribe_audio(audio_path, language)
# Clear GPU memory after transcription
torch.cuda.empty_cache()
gc.collect()
combined_srt_path = f"{base_name}_combined.srt"
create_combined_srt(chunks, diarization, combined_srt_path, max_speakers)
os.remove(audio_path)
# Final GPU memory clear
torch.cuda.empty_cache()
gc.collect()
return combined_srt_path
|