File size: 4,910 Bytes
9deffb0
a08b017
1f8fc17
a08b017
385f1b4
a08b017
 
e3551a8
a08b017
 
 
09abe1d
 
 
 
9deffb0
a08b017
156337d
 
e3551a8
156337d
e3551a8
156337d
e3551a8
 
 
987653b
 
156337d
 
385f1b4
a08b017
 
 
 
 
 
 
 
 
e3551a8
09abe1d
 
 
 
 
 
 
 
 
a08b017
 
09abe1d
 
 
 
 
 
a08b017
 
 
e3551a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a08b017
9421df7
a08b017
 
9421df7
 
 
11fa897
e3551a8
9421df7
 
 
8492e05
a08b017
 
 
 
 
 
 
 
8492e05
a08b017
 
 
 
 
 
123e28e
a08b017
9421df7
8492e05
9421df7
 
 
e3551a8
a08b017
 
 
 
e3551a8
 
a08b017
1f8fc17
987653b
 
1f8fc17
e3551a8
a08b017
1f8fc17
987653b
 
1f8fc17
a08b017
11fa897
a08b017
 
 
1f8fc17
987653b
 
1f8fc17
09abe1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import torch
import gc
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
import librosa
import soundfile as sf
import datetime
from collections import defaultdict
import numpy as np
import openai
from config import openai_api_key

openai.api_key = openai_api_key

class LazyDiarizationPipeline:
    def __init__(self):
        self.pipeline = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    def get_pipeline(self, hf_token):
        if self.pipeline is None:
            self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1",
                                                     use_auth_token=hf_token)
            self.pipeline = self.pipeline.to(self.device)
            torch.cuda.empty_cache()
            gc.collect()
        return self.pipeline

lazy_diarization_pipeline = LazyDiarizationPipeline()

def extract_audio(video_path, audio_path):
    video = VideoFileClip(video_path)
    audio = video.audio
    audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)

def format_timestamp(seconds):
    return str(datetime.timedelta(seconds=seconds)).split('.')[0]

def transcribe_audio(audio_path, language):
    with open(audio_path, "rb") as audio_file:
        transcript = openai.Audio.transcribe(
            file=audio_file,
            model="whisper-1",
            language=language,
            response_format="verbose_json"
        )

    transcription_txt = transcript["text"]
    transcription_chunks = []

    for segment in transcript["segments"]:
        transcription_chunks.append({
            "start": segment["start"],
            "end": segment["end"],
            "text": segment["text"]
        })

    return transcription_txt, transcription_chunks

def diarize_audio(audio_path, pipeline, max_speakers):
    # Load the entire audio file
    audio, sr = librosa.load(audio_path, sr=16000)

    # Write the audio to a temporary file if needed for the pipeline
    temp_audio_path = f"{audio_path}_temp.wav"
    sf.write(temp_audio_path, audio, sr)

    # Perform speaker diarization on the entire audio file
    diarization = pipeline(temp_audio_path, num_speakers=max_speakers)

    # Clean up the temporary file
    os.remove(temp_audio_path)
    torch.cuda.empty_cache()
    gc.collect()

    return diarization

def create_combined_srt(transcription_chunks, diarization, output_path, max_speakers):
    speaker_segments = []
    speaker_durations = defaultdict(float)

    for segment, _, speaker in diarization.itertracks(yield_label=True):
        speaker_durations[speaker] += segment.end - segment.start
        speaker_segments.append((segment.start, segment.end, speaker))

    sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)[:max_speakers]

    speaker_map = {}
    for i, (speaker, _) in enumerate(sorted_speakers, start=1):
        speaker_map[speaker] = f"Speaker {i}"

    with open(output_path, 'w', encoding='utf-8') as srt_file:
        for i, chunk in enumerate(transcription_chunks, 1):
            start_time, end_time = chunk["start"], chunk["end"]
            text = chunk["text"]

            current_speaker = "Unknown"
            for seg_start, seg_end, speaker in speaker_segments:
                if seg_start <= start_time < seg_end:
                    current_speaker = speaker_map.get(speaker, "Unknown")
                    break

            start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
            end_str = format_timestamp(end_time).split('.')[0].lstrip('0')

            srt_file.write(f"{i}\n")
            srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")

    with open(output_path, 'a', encoding='utf-8') as srt_file:
        for i, (speaker, duration) in enumerate(sorted_speakers, start=1):
            duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
            srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")

def process_video(video_path, hf_token, language, max_speakers=3):
    base_name = os.path.splitext(video_path)[0]
    audio_path = f"{base_name}.wav"
    extract_audio(video_path, audio_path)

    pipeline = lazy_diarization_pipeline.get_pipeline(hf_token)
    diarization = diarize_audio(audio_path, pipeline, max_speakers)

    # Clear GPU memory after diarization
    torch.cuda.empty_cache()
    gc.collect()

    transcription, chunks = transcribe_audio(audio_path, language)

    # Clear GPU memory after transcription
    torch.cuda.empty_cache()
    gc.collect()

    combined_srt_path = f"{base_name}_combined.srt"
    create_combined_srt(chunks, diarization, combined_srt_path, max_speakers)

    os.remove(audio_path)

    # Final GPU memory clear
    torch.cuda.empty_cache()
    gc.collect()

    return combined_srt_path