Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from llm_loader import load_model | |
| from processing import process_input | |
| from transcription_diarization import diarize_audio | |
| from visualization import create_charts | |
| import time | |
| import re | |
| from config import openai_api_key | |
| # Load the model | |
| llm = load_model(openai_api_key) | |
| def analyze_video(video_path, progress=gr.Progress()): | |
| start_time = time.time() | |
| if not video_path: | |
| return [None] * 29 # Return None for all outputs | |
| progress(0, desc="Starting analysis...") | |
| progress(0.2, desc="Starting transcription and diarization") | |
| transcription = diarize_audio(video_path) | |
| progress(0.5, desc="Transcription and diarization complete.") | |
| progress(0.6, desc="Processing transcription") | |
| results = process_input(transcription, llm) | |
| progress(0.7, desc="Transcription processing complete.") | |
| progress(0.9, desc="Generating charts") | |
| charts, explanations, general_impressions = create_charts(results) | |
| progress(1.0, desc="Charts generation complete.") | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| output_components = [transcription] # transcript | |
| for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1): | |
| print(speaker_id) | |
| print(enumerate(charts.items()) | |
| speaker_explanations = explanations[speaker_id] | |
| speaker_general_impression = general_impressions[speaker_id] | |
| speaker_section = [ | |
| gr.Markdown(f"# {speaker_id}", visible=True), | |
| gr.Textbox(value=speaker_general_impression, label="General Impression", | |
| visible=True), | |
| gr.Plot(value=speaker_charts.get("attachment", None), visible=True), | |
| gr.Plot(value=speaker_charts.get("dimensions", None), visible=True), | |
| gr.Textbox(value=speaker_explanations.get("attachment", ""), label="Attachment Styles Explanation", | |
| visible=True), | |
| gr.Plot(value=speaker_charts.get("bigfive", None), visible=True), | |
| gr.Textbox(value=speaker_explanations.get("bigfive", ""), label="Big Five Traits Explanation", | |
| visible=True), | |
| gr.Plot(value=speaker_charts.get("personality", None), visible=True), | |
| gr.Textbox(value=speaker_explanations.get("personality", ""), label="Personality Disorders Explanation", | |
| visible=True), | |
| ] | |
| output_components.extend(speaker_section) | |
| # Pad with None for any missing speakers | |
| while len(output_components) < 28: | |
| output_components.extend([gr.update(visible=False)] * 9) | |
| output_components.append(f"Completed in {int(execution_time)} seconds.") # execution info | |
| return output_components | |
| def update_output(*args): | |
| return [gr.update(value=arg, visible=arg is not None) for arg in args] | |
| def use_example(): | |
| return "examples/Scenes.From.A.Marriage.US.mp4" | |
| with gr.Blocks() as iface: | |
| gr.Markdown("# AI Personality Detection") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| gr.Markdown("Upload a video") | |
| video_input = gr.Video(label="Upload Video") | |
| analyze_button = gr.Button("Analyze") | |
| with gr.Column(scale=1): | |
| gr.Markdown("Example Video") | |
| example_video = gr.Video("examples/Scenes.From.A.Marriage.US.mp4", label="Example Video") | |
| use_example_button = gr.Button("Use Example Video") | |
| # Create output components | |
| output_components = [] | |
| # Add transcript output near the top | |
| execution_info_box = gr.Textbox(label="Transcript", value="N/A", lines=1) | |
| output_components.append(execution_info_box) | |
| with gr.Row(): | |
| for i in range(3): # Assuming maximum of 3 speakers | |
| with gr.Column(): | |
| column_components = [ | |
| gr.Markdown(visible=False), | |
| gr.Textbox(label="General Impression", visible=False), | |
| gr.Plot(visible=False), | |
| gr.Plot(visible=False), | |
| gr.Textbox(label="Attachment Styles Explanation", visible=False), | |
| gr.Plot(visible=False), | |
| gr.Textbox(label="Big Five Traits Explanation", visible=False), | |
| gr.Plot(visible=False), | |
| gr.Textbox(label="Personality Disorders Explanation", visible=False), | |
| ] | |
| output_components.extend(column_components) | |
| # Add execution info component | |
| transcript_output = gr.Textbox(label="Transcript", lines=10, visible=False) | |
| output_components.append(transcript_output) | |
| analyze_button.click( | |
| fn=analyze_video, | |
| inputs=[video_input], | |
| outputs=output_components, | |
| show_progress=True | |
| ) | |
| use_example_button.click( | |
| fn=use_example, | |
| inputs=[], | |
| outputs=[video_input], | |
| ).then(fn=analyze_video, | |
| inputs=[video_input], | |
| outputs=output_components, | |
| show_progress=True | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |