Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import login | |
import torch | |
import time | |
from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM | |
from langdetect import detect | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.prompts import PromptTemplate | |
from langchain_community.document_loaders import TextLoader, PyPDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import spaces | |
from transcription_diarization import process_video | |
# Get Hugging Face token from Space secret | |
hf_token = os.environ.get('hf_secret') | |
if not hf_token: | |
raise ValueError("HF_TOKEN not found in environment variables. Please set it in the Space secrets.") | |
# Login to Hugging Face | |
login(token=hf_token) | |
# Analysis Pipeline Classes | |
class LazyPipeline: | |
def __init__(self): | |
self.pipeline = None | |
def get_pipeline(self): | |
if self.pipeline is None: | |
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
use_auth_token=hf_token | |
) | |
self.pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=800, | |
temperature=0.3, | |
top_p = 0.95, | |
top_k = 5, | |
repetition_penalty = 1.2, | |
do_sample=True, | |
) | |
return self.pipeline | |
class LazyLLM: | |
def __init__(self, lazy_pipeline): | |
self.lazy_pipeline = lazy_pipeline | |
self.llm = None | |
def get_llm(self): | |
if self.llm is None: | |
pipe = self.lazy_pipeline.get_pipeline() | |
self.llm = HuggingFacePipeline(pipeline=pipe) | |
return self.llm | |
class LazyChains: | |
def __init__(self, lazy_llm): | |
self.lazy_llm = lazy_llm | |
self.attachments_chain = None | |
self.bigfive_chain = None | |
self.personalities_chain = None | |
def create_prompt(self, task): | |
return PromptTemplate( | |
template=task + "\n\nContext: {context}\n\nTask: {question}\n\n-----------\n\nAnswer: ", | |
input_variables=["context", "question"] | |
) | |
def get_chains(self): | |
if self.attachments_chain is None: | |
llm = self.lazy_llm.get_llm() | |
self.attachments_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=attachments_db.as_retriever(), | |
chain_type_kwargs={"prompt": self.create_prompt(attachments_task)} | |
) | |
self.bigfive_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=bigfive_db.as_retriever(), | |
chain_type_kwargs={"prompt": self.create_prompt(bigfive_task)} | |
) | |
self.personalities_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=personalities_db.as_retriever(), | |
chain_type_kwargs={"prompt": self.create_prompt(personalities_task)} | |
) | |
return self.attachments_chain, self.bigfive_chain, self.personalities_chain | |
lazy_pipe = LazyPipeline() | |
lazy_llm = LazyLLM(lazy_pipe) | |
lazy_chains = LazyChains(lazy_llm) | |
# Load instruction files | |
def load_instructions(file_path): | |
with open(file_path, 'r') as file: | |
return file.read().strip() | |
attachments_task = load_instructions("tasks/Attachments_task.txt") | |
bigfive_task = load_instructions("tasks/BigFive_task.txt") | |
personalities_task = load_instructions("tasks/Personalities_task.txt") | |
# Load knowledge files and create vector stores | |
def load_knowledge(file_path): | |
loader = TextLoader(file_path) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
return texts | |
embeddings = HuggingFaceEmbeddings() | |
attachments_db = FAISS.from_documents(load_knowledge("knowledge/bartholomew_attachments_definitions - no int.txt"), embeddings) | |
bigfive_db = FAISS.from_documents(load_knowledge("knowledge/bigfive_definitions.txt"), embeddings) | |
personalities_db = FAISS.from_documents(load_knowledge("knowledge/personalities_definitions.txt"), embeddings) | |
def detect_language(text): | |
try: | |
return detect(text) | |
except: | |
return "en" # default to English if detection fails | |
# Analysis functions | |
def analyze_content(content, safe_progress): | |
attachments_chain, bigfive_chain, personalities_chain = lazy_chains.get_chains() | |
safe_progress(0.6, desc="Analyzing attachments...") | |
attachments_result = attachments_chain({"query": content}) | |
attachments_answer = attachments_result['result'].split("-----------\n\nAnswer:")[-1].strip() | |
safe_progress(0.7, desc="Analyzing Big Five traits...") | |
bigfive_result = bigfive_chain({"query": content}) | |
bigfive_answer = bigfive_result['result'].split("-----------\n\nAnswer:")[-1].strip() | |
safe_progress(0.8, desc="Analyzing personalities...") | |
personalities_result = personalities_chain({"query": content}) | |
personalities_answer = personalities_result['result'].split("-----------\n\nAnswer:")[-1].strip() | |
return attachments_answer, bigfive_answer, personalities_answer | |
# Main processing function | |
def process_input(input_file, progress=None): | |
start_time = time.time() | |
def safe_progress(value, desc=""): | |
if progress is not None: | |
try: | |
progress(value, desc=desc) | |
except Exception as e: | |
print(f"Progress update failed: {e}") | |
safe_progress(0, desc="Processing file...") | |
file_extension = os.path.splitext(input_file.name)[1].lower() | |
if file_extension == '.txt': | |
with open(input_file.name, 'r', encoding='utf-8') as file: | |
content = file.read() | |
elif file_extension == '.pdf': | |
loader = PyPDFLoader(input_file.name) | |
pages = loader.load_and_split() | |
content = '\n'.join([page.page_content for page in pages]) | |
elif file_extension in ['.mp4', '.avi', '.mov']: | |
safe_progress(0.2, desc="Processing video...") | |
srt_path = process_video(input_file.name, hf_token, "en") | |
with open(srt_path, 'r', encoding='utf-8') as file: | |
content = file.read() | |
os.remove(srt_path) | |
else: | |
return "Unsupported file format. Please upload a TXT, PDF, or video file.", None, None, None, None, None | |
detected_language = detect_language(content) | |
safe_progress(0.4, desc="Analyzing content...") | |
attachments_answer, bigfive_answer, personalities_answer = analyze_content(content, safe_progress) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
execution_info = f"{execution_time:.2f} seconds" | |
safe_progress(1.0, desc="Analysis complete!") | |
print("Attachments output:", attachments_answer) | |
print("Big Five output:", bigfive_answer) | |
print("Personalities output:", personalities_answer) | |
return ("Analysis complete!", execution_info, detected_language, | |
attachments_answer, bigfive_answer, personalities_answer) |