Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,9 @@ from processing import process_input
|
|
4 |
from transcription_diarization import diarize_audio
|
5 |
from visualization import create_charts
|
6 |
import time
|
|
|
7 |
import cv2
|
|
|
8 |
from config import openai_api_key
|
9 |
|
10 |
# Load the model
|
@@ -13,7 +15,7 @@ llm = load_model(openai_api_key)
|
|
13 |
def analyze_video(video_path, progress=gr.Progress()):
|
14 |
start_time = time.time()
|
15 |
if not video_path:
|
16 |
-
return [None] *
|
17 |
|
18 |
progress(0, desc="Starting analysis...")
|
19 |
progress(0.2, desc="Starting transcription and diarization")
|
@@ -32,41 +34,91 @@ def analyze_video(video_path, progress=gr.Progress()):
|
|
32 |
end_time = time.time()
|
33 |
execution_time = end_time - start_time
|
34 |
|
35 |
-
output_components = []
|
36 |
|
37 |
output_components.append(f"Completed in {int(execution_time)} seconds.")
|
38 |
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
gr.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
gr.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
return output_components
|
63 |
|
|
|
64 |
def use_example_1():
|
65 |
return "examples/Scenes.From.A.Marriage.US.mp4"
|
66 |
-
|
67 |
def use_example_2():
|
68 |
return "examples/Billie Eilish.mp4"
|
69 |
-
|
70 |
def use_example_3():
|
71 |
return "examples/Elliot Rodger.mp4"
|
72 |
|
@@ -83,9 +135,6 @@ def get_middle_frame(video_path):
|
|
83 |
return preview_path
|
84 |
return None
|
85 |
|
86 |
-
def clear_outputs():
|
87 |
-
return [None] * 32
|
88 |
-
|
89 |
with gr.Blocks() as iface:
|
90 |
gr.Markdown("# Multiple-Speakers-Personality-Analyzer")
|
91 |
gr.Markdown("This project provides an advanced AI system designed for diagnosing and profiling personality attributes from video content based on a single speaker or multiple speakers in a conversation.")
|
@@ -97,48 +146,65 @@ with gr.Blocks() as iface:
|
|
97 |
|
98 |
# Create output components
|
99 |
output_components = []
|
|
|
100 |
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
|
101 |
output_components.append(execution_box)
|
102 |
|
103 |
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
|
104 |
output_components.append(transcript)
|
105 |
|
106 |
-
for n in range(3): #
|
107 |
-
with gr.Tab(label=f'Speaker {n + 1}', visible=True)
|
108 |
-
gr.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
gr.
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
with open('description.txt', 'r') as file:
|
144 |
description_txt = file.read()
|
@@ -147,13 +213,8 @@ with gr.Blocks() as iface:
|
|
147 |
gr.HTML("<div style='height: 20px;'></div>")
|
148 |
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=1000)
|
149 |
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=1000)
|
150 |
-
|
151 |
|
152 |
analyze_button.click(
|
153 |
-
fn=clear_outputs,
|
154 |
-
inputs=[],
|
155 |
-
outputs=output_components
|
156 |
-
).then(
|
157 |
fn=analyze_video,
|
158 |
inputs=[video_input],
|
159 |
outputs=output_components,
|
@@ -164,46 +225,29 @@ with gr.Blocks() as iface:
|
|
164 |
fn=use_example_1,
|
165 |
inputs=[],
|
166 |
outputs=[video_input],
|
167 |
-
).then(
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
fn=analyze_video,
|
173 |
-
inputs=[video_input],
|
174 |
-
outputs=output_components,
|
175 |
-
show_progress=True
|
176 |
-
)
|
177 |
-
|
178 |
use_example_button_2.click(
|
179 |
fn=use_example_2,
|
180 |
inputs=[],
|
181 |
outputs=[video_input],
|
182 |
-
).then(
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
fn=analyze_video,
|
188 |
-
inputs=[video_input],
|
189 |
-
outputs=output_components,
|
190 |
-
show_progress=True
|
191 |
-
)
|
192 |
-
|
193 |
use_example_button_3.click(
|
194 |
fn=use_example_3,
|
195 |
inputs=[],
|
196 |
outputs=[video_input],
|
197 |
-
).then(
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
fn=analyze_video,
|
203 |
-
inputs=[video_input],
|
204 |
-
outputs=output_components,
|
205 |
-
show_progress=True
|
206 |
-
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
iface.launch()
|
|
|
4 |
from transcription_diarization import diarize_audio
|
5 |
from visualization import create_charts
|
6 |
import time
|
7 |
+
import re
|
8 |
import cv2
|
9 |
+
import os
|
10 |
from config import openai_api_key
|
11 |
|
12 |
# Load the model
|
|
|
15 |
def analyze_video(video_path, progress=gr.Progress()):
|
16 |
start_time = time.time()
|
17 |
if not video_path:
|
18 |
+
return [None] * 29 # Return None for all outputs
|
19 |
|
20 |
progress(0, desc="Starting analysis...")
|
21 |
progress(0.2, desc="Starting transcription and diarization")
|
|
|
34 |
end_time = time.time()
|
35 |
execution_time = end_time - start_time
|
36 |
|
37 |
+
output_components = [] # transcript
|
38 |
|
39 |
output_components.append(f"Completed in {int(execution_time)} seconds.")
|
40 |
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
|
41 |
|
42 |
+
with gr.Tab(label=f'Examples', visible=False):
|
43 |
+
gr.Markdown("### Example Videos")
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column(scale=1):
|
46 |
+
example_video_1_path = "examples/Scenes.From.A.Marriage.US.mp4"
|
47 |
+
preview_1 = get_middle_frame(example_video_1_path)
|
48 |
+
gr.Image(preview_1, label="Scenes From A Marriage")
|
49 |
+
example_video_1 = gr.Video(example_video_1_path, label="Example 1", visible=False)
|
50 |
+
use_example_button_1 = gr.Button("Load Example 1")
|
51 |
+
|
52 |
+
with gr.Column(scale=1):
|
53 |
+
example_video_2_path = "examples/Billie Eilish.mp4"
|
54 |
+
preview_2 = get_middle_frame(example_video_2_path)
|
55 |
+
gr.Image(preview_2, label="Billie Eilish")
|
56 |
+
example_video_2 = gr.Video(example_video_2_path, label="Example 2", visible=False)
|
57 |
+
use_example_button_2 = gr.Button("Load Example 2")
|
58 |
+
|
59 |
+
with gr.Column(scale=1):
|
60 |
+
example_video_3_path = "examples/Elliot Rodger.mp4"
|
61 |
+
preview_3 = get_middle_frame(example_video_3_path)
|
62 |
+
gr.Image(preview_3, label="Elliot Rodger")
|
63 |
+
example_video_3 = gr.Video(example_video_3_path, label="Example 3", visible=False)
|
64 |
+
use_example_button_3 = gr.Button("Load Example 3")
|
65 |
+
|
66 |
+
with gr.Tab(label=f'Description', visible=False):
|
67 |
+
gr.Markdown(description_txt)
|
68 |
+
gr.HTML("<div style='height: 20px;'></div>")
|
69 |
+
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=1000)
|
70 |
+
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=1000)
|
71 |
+
|
72 |
+
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
|
73 |
+
print(speaker_id)
|
74 |
+
speaker_explanations = explanations[speaker_id]
|
75 |
+
speaker_general_impression = general_impressions[speaker_id]
|
76 |
|
77 |
+
with gr.Tab():
|
78 |
+
with gr.TabItem(label=f'General Impression'):
|
79 |
+
speaker_section1 = [
|
80 |
+
gr.Markdown(f"### {speaker_id}", visible=True),
|
81 |
+
gr.Textbox(value=speaker_general_impression, label="General Impression", visible=True, lines=10)
|
82 |
+
]
|
83 |
+
|
84 |
+
with gr.TabItem(label=f'Attachment Styles'):
|
85 |
+
speaker_section2 = [
|
86 |
+
gr.Plot(value=speaker_charts.get("attachment", None), visible=True),
|
87 |
+
gr.Plot(value=speaker_charts.get("dimensions", None), visible=True),
|
88 |
+
gr.Textbox(value=speaker_explanations.get("attachment", ""), label="Attachment Styles Explanation",
|
89 |
+
visible=True, lines=2)
|
90 |
+
]
|
91 |
+
|
92 |
+
with gr.TabItem(label=f'Big Five Traits'):
|
93 |
+
speaker_section3 = [
|
94 |
+
gr.Plot(value=speaker_charts.get("bigfive", None), visible=True),
|
95 |
+
gr.Textbox(value=speaker_explanations.get("bigfive", ""), label="Big Five Traits Explanation",
|
96 |
+
visible=True, lines=2)
|
97 |
+
]
|
98 |
+
|
99 |
+
with gr.TabItem(label=f'Personalities'):
|
100 |
+
speaker_section4 = [
|
101 |
+
gr.Plot(value=speaker_charts.get("personality", None), visible=True),
|
102 |
+
gr.Textbox(value=speaker_explanations.get("personality", ""),
|
103 |
+
label="Personality Disorders Explanation", visible=True, lines=2)
|
104 |
+
]
|
105 |
+
|
106 |
+
output_components.extend(speaker_section1)
|
107 |
+
output_components.extend(speaker_section2)
|
108 |
+
output_components.extend(speaker_section3)
|
109 |
+
output_components.extend(speaker_section4)
|
110 |
+
|
111 |
+
# Pad with None for any missing speakers
|
112 |
+
while len(output_components) < 28:
|
113 |
+
output_components.extend([gr.update(visible=False)] * 9)
|
114 |
|
115 |
return output_components
|
116 |
|
117 |
+
|
118 |
def use_example_1():
|
119 |
return "examples/Scenes.From.A.Marriage.US.mp4"
|
|
|
120 |
def use_example_2():
|
121 |
return "examples/Billie Eilish.mp4"
|
|
|
122 |
def use_example_3():
|
123 |
return "examples/Elliot Rodger.mp4"
|
124 |
|
|
|
135 |
return preview_path
|
136 |
return None
|
137 |
|
|
|
|
|
|
|
138 |
with gr.Blocks() as iface:
|
139 |
gr.Markdown("# Multiple-Speakers-Personality-Analyzer")
|
140 |
gr.Markdown("This project provides an advanced AI system designed for diagnosing and profiling personality attributes from video content based on a single speaker or multiple speakers in a conversation.")
|
|
|
146 |
|
147 |
# Create output components
|
148 |
output_components = []
|
149 |
+
# Add transcript output near the top
|
150 |
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
|
151 |
output_components.append(execution_box)
|
152 |
|
153 |
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
|
154 |
output_components.append(transcript)
|
155 |
|
156 |
+
for n in range(3): # Assuming maximum of 3 speakers
|
157 |
+
with gr.Tab(label=f'Speaker {n + 1}', visible=True):
|
158 |
+
with gr.TabItem(label=f'General Impression'):
|
159 |
+
column_components1 = [
|
160 |
+
gr.Markdown(visible=False),
|
161 |
+
gr.Textbox(label="General Impression", visible=False)]
|
162 |
+
|
163 |
+
with gr.TabItem(label=f'Attachment Styles'):
|
164 |
+
column_components2 = [
|
165 |
+
gr.Plot(visible=False),
|
166 |
+
gr.Plot(visible=False),
|
167 |
+
gr.Textbox(label="Attachment Styles Explanation", visible=False)]
|
168 |
+
|
169 |
+
with gr.TabItem(label=f'Big Five Traits'):
|
170 |
+
column_components3 = [
|
171 |
+
gr.Plot(visible=False),
|
172 |
+
gr.Textbox(label="Big Five Traits Explanation", visible=False)]
|
173 |
+
|
174 |
+
with gr.TabItem(label=f'Personalities'):
|
175 |
+
column_components4 = [
|
176 |
+
gr.Plot(visible=False),
|
177 |
+
gr.Textbox(label="Personality Disorders Explanation", visible=False)]
|
178 |
+
|
179 |
+
output_components.extend(column_components1)
|
180 |
+
output_components.extend(column_components2)
|
181 |
+
output_components.extend(column_components3)
|
182 |
+
output_components.extend(column_components4)
|
183 |
+
|
184 |
+
|
185 |
+
with gr.Tab(label=f'Examples', visible=True):
|
186 |
+
gr.Markdown("### Example Videos")
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column(scale=1):
|
189 |
+
example_video_1_path = "examples/Scenes.From.A.Marriage.US.mp4"
|
190 |
+
preview_1 = get_middle_frame(example_video_1_path)
|
191 |
+
gr.Image(preview_1, label="Scenes From A Marriage")
|
192 |
+
example_video_1 = gr.Video(example_video_1_path, label="Example 1", visible=False)
|
193 |
+
use_example_button_1 = gr.Button("Load Example 1")
|
194 |
+
|
195 |
+
with gr.Column(scale=1):
|
196 |
+
example_video_2_path = "examples/Billie Eilish.mp4"
|
197 |
+
preview_2 = get_middle_frame(example_video_2_path)
|
198 |
+
gr.Image(preview_2, label="Billie Eilish")
|
199 |
+
example_video_2 = gr.Video(example_video_2_path, label="Example 2", visible=False)
|
200 |
+
use_example_button_2 = gr.Button("Load Example 2")
|
201 |
+
|
202 |
+
with gr.Column(scale=1):
|
203 |
+
example_video_3_path = "examples/Elliot Rodger.mp4"
|
204 |
+
preview_3 = get_middle_frame(example_video_3_path)
|
205 |
+
gr.Image(preview_3, label="Elliot Rodger")
|
206 |
+
example_video_3 = gr.Video(example_video_3_path, label="Example 3", visible=False)
|
207 |
+
use_example_button_3 = gr.Button("Load Example 3")
|
208 |
|
209 |
with open('description.txt', 'r') as file:
|
210 |
description_txt = file.read()
|
|
|
213 |
gr.HTML("<div style='height: 20px;'></div>")
|
214 |
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=1000)
|
215 |
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=1000)
|
|
|
216 |
|
217 |
analyze_button.click(
|
|
|
|
|
|
|
|
|
218 |
fn=analyze_video,
|
219 |
inputs=[video_input],
|
220 |
outputs=output_components,
|
|
|
225 |
fn=use_example_1,
|
226 |
inputs=[],
|
227 |
outputs=[video_input],
|
228 |
+
).then(fn=analyze_video,
|
229 |
+
inputs=[video_input],
|
230 |
+
outputs=output_components,
|
231 |
+
show_progress=True
|
232 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
use_example_button_2.click(
|
234 |
fn=use_example_2,
|
235 |
inputs=[],
|
236 |
outputs=[video_input],
|
237 |
+
).then(fn=analyze_video,
|
238 |
+
inputs=[video_input],
|
239 |
+
outputs=output_components,
|
240 |
+
show_progress=True
|
241 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
use_example_button_3.click(
|
243 |
fn=use_example_3,
|
244 |
inputs=[],
|
245 |
outputs=[video_input],
|
246 |
+
).then(fn=analyze_video,
|
247 |
+
inputs=[video_input],
|
248 |
+
outputs=output_components,
|
249 |
+
show_progress=True
|
250 |
+
)
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
iface.launch()
|