Spaces:
Runtime error
Runtime error
Update transcription_diarization.py
Browse files- transcription_diarization.py +115 -184
transcription_diarization.py
CHANGED
|
@@ -1,192 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
lazy_diarization_pipeline = LazyDiarizationPipeline()
|
| 28 |
-
|
| 29 |
-
def extract_audio(video_path):
|
| 30 |
-
base_name = os.path.splitext(video_path)[0]
|
| 31 |
-
audio_path = f"{base_name}.wav"
|
| 32 |
-
video = VideoFileClip(video_path)
|
| 33 |
-
audio = video.audio
|
| 34 |
-
# Reduce audio quality to keep file size smaller
|
| 35 |
-
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000, nbytes=2)
|
| 36 |
-
return audio_path
|
| 37 |
-
|
| 38 |
-
def format_timestamp(seconds):
|
| 39 |
-
return str(datetime.timedelta(seconds=round(seconds))).zfill(8)
|
| 40 |
-
|
| 41 |
-
def diarize_audio(audio_path, pipeline, max_speakers):
|
| 42 |
-
diarization = pipeline(audio_path, num_speakers=max_speakers)
|
| 43 |
-
return diarization
|
| 44 |
-
|
| 45 |
-
def split_audio_on_silence(audio_path, min_silence_len=500, silence_thresh=-40, keep_silence=500):
|
| 46 |
-
audio = AudioSegment.from_wav(audio_path)
|
| 47 |
-
chunks = silence.split_on_silence(
|
| 48 |
-
audio,
|
| 49 |
-
min_silence_len=min_silence_len,
|
| 50 |
-
silence_thresh=silence_thresh,
|
| 51 |
-
keep_silence=keep_silence
|
| 52 |
)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
})
|
| 83 |
|
| 84 |
-
return
|
| 85 |
|
| 86 |
-
def
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
with open(output_path, 'w', encoding='utf-8') as srt_file:
|
| 114 |
-
current_speaker = "Unknown"
|
| 115 |
-
current_text = ""
|
| 116 |
-
current_start = 0
|
| 117 |
-
current_end = 0
|
| 118 |
-
entry_count = 0
|
| 119 |
-
|
| 120 |
-
def write_entry():
|
| 121 |
-
nonlocal entry_count, current_speaker, current_start, current_end, current_text
|
| 122 |
-
if current_text:
|
| 123 |
-
entry_count += 1
|
| 124 |
-
start_str = format_timestamp(current_start)
|
| 125 |
-
end_str = format_timestamp(current_end)
|
| 126 |
-
srt_file.write(f"[{entry_count}. {current_speaker} | time: ({start_str} --> {end_str}) | text: {current_text.strip()}]\n\n")
|
| 127 |
-
|
| 128 |
-
for chunk in transcription_chunks:
|
| 129 |
-
start_time, end_time = chunk["start"], chunk["end"]
|
| 130 |
-
text = chunk["text"]
|
| 131 |
-
|
| 132 |
-
# Avoid splitting mid-sentence
|
| 133 |
-
if current_text and (text[0].isupper() or text.startswith(('.', '?', '!', '...'))):
|
| 134 |
-
write_entry()
|
| 135 |
-
current_speaker = "Unknown"
|
| 136 |
-
for seg_start, seg_end, speaker in speaker_segments:
|
| 137 |
-
if seg_start <= start_time < seg_end:
|
| 138 |
-
current_speaker = speaker_map.get(speaker, "Unknown")
|
| 139 |
-
break
|
| 140 |
-
|
| 141 |
-
current_text = ""
|
| 142 |
-
current_start = start_time
|
| 143 |
-
|
| 144 |
-
current_text += " " + text
|
| 145 |
-
current_end = end_time
|
| 146 |
-
|
| 147 |
-
# Write entry if sentence ends with a punctuation mark
|
| 148 |
-
if current_text.strip().endswith(('.', '?', '!', '...')):
|
| 149 |
-
write_entry()
|
| 150 |
-
current_text = ""
|
| 151 |
-
current_start = end_time
|
| 152 |
-
|
| 153 |
-
write_entry()
|
| 154 |
-
|
| 155 |
-
with open(output_path, 'a', encoding='utf-8') as srt_file:
|
| 156 |
-
for i, (speaker, duration) in enumerate(sorted_speakers, start=1):
|
| 157 |
-
duration_str = format_timestamp(duration)
|
| 158 |
-
srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")
|
| 159 |
-
|
| 160 |
-
def process_video(video_path, hf_token, language, max_speakers=3):
|
| 161 |
-
audio_path = extract_audio(video_path)
|
| 162 |
-
|
| 163 |
-
pipeline = lazy_diarization_pipeline.get_pipeline(hf_token)
|
| 164 |
-
diarization = diarize_audio(audio_path, pipeline, max_speakers)
|
| 165 |
-
|
| 166 |
-
if torch.cuda.is_available():
|
| 167 |
-
torch.cuda.empty_cache()
|
| 168 |
-
gc.collect()
|
| 169 |
-
|
| 170 |
-
transcription, chunks = transcribe_large_audio(audio_path, language)
|
| 171 |
-
|
| 172 |
-
if torch.cuda.is_available():
|
| 173 |
-
torch.cuda.empty_cache()
|
| 174 |
-
gc.collect()
|
| 175 |
-
|
| 176 |
-
combined_srt_path = f"{os.path.splitext(video_path)[0]}_combined.srt"
|
| 177 |
-
create_combined_srt(chunks, diarization, combined_srt_path, max_speakers)
|
| 178 |
-
|
| 179 |
-
os.remove(audio_path)
|
| 180 |
-
|
| 181 |
-
if torch.cuda.is_available():
|
| 182 |
-
torch.cuda.empty_cache()
|
| 183 |
-
gc.collect()
|
| 184 |
-
|
| 185 |
-
# Convert the diarization results to a readable format
|
| 186 |
-
diarization_output = ""
|
| 187 |
-
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 188 |
-
start_time = format_timestamp(turn.start)
|
| 189 |
-
end_time = format_timestamp(turn.end)
|
| 190 |
-
diarization_output += f"Speaker {speaker}: {start_time} --> {end_time}\n"
|
| 191 |
-
|
| 192 |
-
return combined_srt_path, diarization_output
|
|
|
|
| 1 |
+
import boto3
|
| 2 |
+
import time
|
| 3 |
+
import json
|
| 4 |
import os
|
| 5 |
+
from config import aws_access_key_id, aws_secret_access_key
|
| 6 |
+
|
| 7 |
+
def upload_to_s3(local_file_path, bucket_name, s3_file_key):
|
| 8 |
+
s3_client = boto3.client('s3',
|
| 9 |
+
aws_access_key_id=aws_access_key_id,
|
| 10 |
+
aws_secret_access_key=aws_secret_access_key,
|
| 11 |
+
region_name='eu-central-1')
|
| 12 |
+
s3_client.upload_file(local_file_path, bucket_name, s3_file_key)
|
| 13 |
+
return f's3://{bucket_name}/{s3_file_key}'
|
| 14 |
+
|
| 15 |
+
def transcribe_video(file_uri, job_name, max_speakers):
|
| 16 |
+
transcribe = boto3.client('transcribe',
|
| 17 |
+
aws_access_key_id=aws_access_key_id,
|
| 18 |
+
aws_secret_access_key=aws_secret_access_key,
|
| 19 |
+
region_name='eu-central-1')
|
| 20 |
+
|
| 21 |
+
transcribe.start_transcription_job(
|
| 22 |
+
TranscriptionJobName=job_name,
|
| 23 |
+
Media={'MediaFileUri': file_uri},
|
| 24 |
+
MediaFormat='mp4',
|
| 25 |
+
IdentifyLanguage=True,
|
| 26 |
+
Settings={
|
| 27 |
+
'ShowSpeakerLabels': True,
|
| 28 |
+
'MaxSpeakerLabels': max_speakers
|
| 29 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
+
while True:
|
| 33 |
+
status = transcribe.get_transcription_job(TranscriptionJobName=job_name)
|
| 34 |
+
if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
|
| 35 |
+
break
|
| 36 |
+
print("Waiting for transcription to complete...")
|
| 37 |
+
time.sleep(30)
|
| 38 |
+
|
| 39 |
+
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':
|
| 40 |
+
transcript_url = status['TranscriptionJob']['Transcript']['TranscriptFileUri']
|
| 41 |
+
print("Transcription completed successfully!")
|
| 42 |
+
return transcript_url
|
| 43 |
+
else:
|
| 44 |
+
print("Transcription failed.")
|
| 45 |
+
return None
|
| 46 |
+
|
| 47 |
+
def download_transcript(transcript_url):
|
| 48 |
+
s3_client = boto3.client('s3',
|
| 49 |
+
aws_access_key_id=aws_access_key_id,
|
| 50 |
+
aws_secret_access_key=aws_secret_access_key,
|
| 51 |
+
region_name='eu-central-1')
|
| 52 |
|
| 53 |
+
bucket_name = transcript_url.split('/')[2]
|
| 54 |
+
key = '/'.join(transcript_url.split('/')[3:])
|
| 55 |
+
|
| 56 |
+
response = s3_client.get_object(Bucket=bucket_name, Key=key)
|
| 57 |
+
transcript_content = response['Body'].read().decode('utf-8')
|
| 58 |
+
return json.loads(transcript_content)
|
| 59 |
+
|
| 60 |
+
def extract_transcriptions_with_speakers(transcript_data):
|
| 61 |
+
segments = transcript_data['results']['speaker_labels']['segments']
|
| 62 |
+
items = transcript_data['results']['items']
|
| 63 |
+
|
| 64 |
+
current_speaker = None
|
| 65 |
+
current_text = []
|
| 66 |
+
transcriptions = []
|
| 67 |
+
|
| 68 |
+
for item in items:
|
| 69 |
+
if item['type'] == 'pronunciation':
|
| 70 |
+
start_time = float(item['start_time'])
|
| 71 |
+
end_time = float(item['end_time'])
|
| 72 |
+
content = item['alternatives'][0]['content']
|
| 73 |
+
|
| 74 |
+
speaker_segment = next((seg for seg in segments if float(seg['start_time']) <= start_time and float(seg['end_time']) >= end_time), None)
|
| 75 |
+
|
| 76 |
+
if speaker_segment and speaker_segment['speaker_label'] != current_speaker:
|
| 77 |
+
if current_text:
|
| 78 |
+
transcriptions.append({
|
| 79 |
+
'speaker': current_speaker,
|
| 80 |
+
'text': ' '.join(current_text)
|
| 81 |
+
})
|
| 82 |
+
current_text = []
|
| 83 |
+
current_speaker = speaker_segment['speaker_label']
|
| 84 |
+
|
| 85 |
+
current_text.append(content)
|
| 86 |
+
elif item['type'] == 'punctuation':
|
| 87 |
+
current_text[-1] += item['alternatives'][0]['content']
|
| 88 |
+
|
| 89 |
+
if current_text:
|
| 90 |
+
transcriptions.append({
|
| 91 |
+
'speaker': current_speaker,
|
| 92 |
+
'text': ' '.join(current_text)
|
| 93 |
})
|
| 94 |
|
| 95 |
+
return transcriptions
|
| 96 |
|
| 97 |
+
def process_video(video_path, bucket_name, max_speakers):
|
| 98 |
+
# Upload video to S3
|
| 99 |
+
s3_file_key = os.path.basename(video_path)
|
| 100 |
+
file_uri = upload_to_s3(video_path, bucket_name, s3_file_key)
|
| 101 |
|
| 102 |
+
# Start transcription job
|
| 103 |
+
job_name = f'transcription_job_{int(time.time())}'
|
| 104 |
+
transcript_url = transcribe_video(file_uri, job_name, max_speakers)
|
| 105 |
+
|
| 106 |
+
if transcript_url:
|
| 107 |
+
# Download and process transcript
|
| 108 |
+
transcript_data = download_transcript(transcript_url)
|
| 109 |
+
transcriptions = extract_transcriptions_with_speakers(transcript_data)
|
| 110 |
+
|
| 111 |
+
# Create combined SRT-like output
|
| 112 |
+
output = []
|
| 113 |
+
for i, trans in enumerate(transcriptions, 1):
|
| 114 |
+
output.append(f"[{i}. {trans['speaker']} | text: {trans['text']}]\n")
|
| 115 |
+
|
| 116 |
+
return '\n'.join(output)
|
| 117 |
+
else:
|
| 118 |
+
return "Transcription failed."
|
| 119 |
+
|
| 120 |
+
# This function will be called from the Gradio app
|
| 121 |
+
def diarize_audio(video_path, max_speakers):
|
| 122 |
+
bucket_name = 'transcriptionjobbucket' # Replace with your actual S3 bucket name
|
| 123 |
+
return process_video(video_path, bucket_name, max_speakers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|