reab5555 commited on
Commit
a47f884
·
verified ·
1 Parent(s): 55d9d3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -83,6 +83,12 @@ attachments_knowledge = load_knowledge("knowledge/bartholomew_attachments_defini
83
  bigfive_knowledge = load_knowledge("knowledge/bigfive_definitions.txt")
84
  personalities_knowledge = load_knowledge("knowledge/personalities_definitions.txt")
85
 
 
 
 
 
 
 
86
  # Lazy initialization for retrieval chains
87
  class LazyChains:
88
  def __init__(self, lazy_llm):
@@ -95,9 +101,9 @@ class LazyChains:
95
  def get_chains(self):
96
  if self.attachments_chain is None:
97
  llm = self.lazy_llm.get_llm()
98
- self.attachments_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=attachments_knowledge)
99
- self.bigfive_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=bigfive_knowledge)
100
- self.personalities_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=personalities_knowledge)
101
  return self.attachments_chain, self.bigfive_chain, self.personalities_chain
102
 
103
  lazy_chains = LazyChains(lazy_llm)
@@ -159,7 +165,7 @@ def process_video(video_file):
159
  iface = gr.Interface(
160
  fn=process_video,
161
  inputs=gr.File(label="Upload Video File"),
162
- outputs=gr.Textbox(label="Analysis Result"),
163
  title="Video Analysis with Meta-Llama-3.1-8B-Instruct",
164
  description="Upload a video file to analyze using RAG techniques with Meta-Llama-3.1-8B-Instruct."
165
  )
 
83
  bigfive_knowledge = load_knowledge("knowledge/bigfive_definitions.txt")
84
  personalities_knowledge = load_knowledge("knowledge/personalities_definitions.txt")
85
 
86
+ # Create vector stores
87
+ embeddings = HuggingFaceEmbeddings()
88
+ attachments_db = FAISS.from_texts([attachments_knowledge], embeddings)
89
+ bigfive_db = FAISS.from_texts([bigfive_knowledge], embeddings)
90
+ personalities_db = FAISS.from_texts([personalities_knowledge], embeddings)
91
+
92
  # Lazy initialization for retrieval chains
93
  class LazyChains:
94
  def __init__(self, lazy_llm):
 
101
  def get_chains(self):
102
  if self.attachments_chain is None:
103
  llm = self.lazy_llm.get_llm()
104
+ self.attachments_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=attachments_db.as_retriever())
105
+ self.bigfive_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=bigfive_db.as_retriever())
106
+ self.personalities_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=personalities_db.as_retriever())
107
  return self.attachments_chain, self.bigfive_chain, self.personalities_chain
108
 
109
  lazy_chains = LazyChains(lazy_llm)
 
165
  iface = gr.Interface(
166
  fn=process_video,
167
  inputs=gr.File(label="Upload Video File"),
168
+ outputs=gr.Textbox(label="Results"),
169
  title="Video Analysis with Meta-Llama-3.1-8B-Instruct",
170
  description="Upload a video file to analyze using RAG techniques with Meta-Llama-3.1-8B-Instruct."
171
  )