Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,19 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from llm_loader import load_model
|
3 |
from processing import process_input
|
4 |
from transcription_diarization import diarize_audio
|
5 |
from visualization import create_charts
|
6 |
-
from interview import get_interview_instance
|
7 |
import time
|
8 |
import re
|
9 |
import cv2
|
10 |
import os
|
11 |
-
import traceback
|
12 |
from config import openai_api_key
|
13 |
|
14 |
# Load the model
|
15 |
llm = load_model(openai_api_key)
|
16 |
|
17 |
-
|
18 |
-
try:
|
19 |
-
print(f"Entering process_message with message: {message}, history: {history}, speaker_id: {speaker_id}")
|
20 |
-
interview = get_interview_instance()
|
21 |
-
response = interview.process_message(message)
|
22 |
-
print(f"Response from interview.process_message: {response}")
|
23 |
-
|
24 |
-
history = history or []
|
25 |
-
history.append((message, response))
|
26 |
-
|
27 |
-
print(f"Returning history: {history}")
|
28 |
-
print(f"Type of history: {type(history)}")
|
29 |
-
print(f"Content of history: {history}")
|
30 |
-
return history
|
31 |
-
except Exception as e:
|
32 |
-
print(f"Error in process_message: {str(e)}")
|
33 |
-
print(traceback.format_exc())
|
34 |
-
return [] # Return an empty list in case of error
|
35 |
-
|
36 |
-
def start_new_interview(general_impression, speaker_id):
|
37 |
-
try:
|
38 |
-
print(f"Entering start_new_interview with general_impression: {general_impression}, speaker_id: {speaker_id}")
|
39 |
-
interview = get_interview_instance()
|
40 |
-
interview.set_general_impression(general_impression)
|
41 |
-
opening_question = interview.start_interview()
|
42 |
-
print(f"Opening question: {opening_question}")
|
43 |
-
|
44 |
-
result = [(None, opening_question)]
|
45 |
-
print(f"Returning result: {result}")
|
46 |
-
return result
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error in start_new_interview: {str(e)}")
|
49 |
-
print(traceback.format_exc())
|
50 |
-
return [] # Return an empty list in case of error
|
51 |
-
|
52 |
def analyze_video(video_path, progress=gr.Progress()):
|
53 |
start_time = time.time()
|
54 |
if not video_path:
|
@@ -67,32 +32,21 @@ def analyze_video(video_path, progress=gr.Progress()):
|
|
67 |
charts, explanations, general_impressions = create_charts(results)
|
68 |
|
69 |
progress(1.0, desc="Charts generation complete.")
|
70 |
-
|
71 |
end_time = time.time()
|
72 |
execution_time = end_time - start_time
|
73 |
|
74 |
-
output_components = []
|
75 |
-
|
76 |
output_components.append(f"Completed in {int(execution_time)} seconds.")
|
77 |
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
|
78 |
-
|
79 |
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
|
|
|
80 |
speaker_explanations = explanations[speaker_id]
|
81 |
speaker_general_impression = general_impressions[speaker_id]
|
82 |
|
83 |
-
# Update the hidden textbox with the general impression
|
84 |
-
output_components.append(gr.Textbox(value=speaker_general_impression, visible=False, label=f"General Impression Speaker {i}"))
|
85 |
-
|
86 |
with gr.Tab(visible=True):
|
87 |
-
with gr.TabItem(label=f'Interactive Interview'):
|
88 |
-
chatbot = gr.Chatbot(visible=True)
|
89 |
-
msg = gr.Textbox(visible=True)
|
90 |
-
clear = gr.Button("Clear", visible=True)
|
91 |
-
start_interview = gr.Button("Start Interview", visible=True)
|
92 |
-
|
93 |
-
print(f"Setting up chatbot for speaker {i}")
|
94 |
-
print(f"Type of chatbot: {type(chatbot)}")
|
95 |
-
|
96 |
with gr.TabItem(label=f'General Impression'):
|
97 |
speaker_section1 = [
|
98 |
gr.Markdown(f"### {speaker_id}", visible=True),
|
@@ -120,26 +74,31 @@ def analyze_video(video_path, progress=gr.Progress()):
|
|
120 |
gr.Textbox(value=speaker_explanations.get("personality", ""),
|
121 |
label="Personality Disorders Explanation", visible=True, lines=2)
|
122 |
]
|
123 |
-
|
124 |
-
output_components.extend([chatbot, msg, clear, start_interview])
|
125 |
output_components.extend(speaker_section1)
|
126 |
output_components.extend(speaker_section2)
|
127 |
output_components.extend(speaker_section3)
|
128 |
output_components.extend(speaker_section4)
|
129 |
|
130 |
# Pad with None for any missing speakers
|
131 |
-
while len(output_components) <
|
132 |
-
output_components.extend([gr.update(visible=False)] *
|
133 |
|
134 |
return output_components
|
135 |
|
|
|
136 |
def use_example_1():
|
137 |
return "examples/Scenes.From.A.Marriage.US.mp4"
|
|
|
|
|
138 |
def use_example_2():
|
139 |
return "examples/Billie Eilish.mp4"
|
|
|
|
|
140 |
def use_example_3():
|
141 |
return "examples/Elliot Rodger.mp4"
|
142 |
|
|
|
143 |
def get_middle_frame(video_path):
|
144 |
cap = cv2.VideoCapture(video_path)
|
145 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -153,45 +112,31 @@ def get_middle_frame(video_path):
|
|
153 |
return preview_path
|
154 |
return None
|
155 |
|
|
|
156 |
with gr.Blocks() as iface:
|
157 |
gr.Markdown("# Multiple Speakers Personality Analyzer")
|
158 |
-
gr.Markdown(
|
|
|
159 |
|
160 |
with gr.Row():
|
161 |
video_input = gr.Video(label="Upload Video")
|
162 |
-
|
163 |
analyze_button = gr.Button("Analyze")
|
164 |
-
|
165 |
# Create output components
|
166 |
output_components = []
|
167 |
-
|
168 |
# Add transcript output near the top
|
169 |
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
|
170 |
output_components.append(execution_box)
|
171 |
|
172 |
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
|
173 |
output_components.append(transcript)
|
174 |
-
|
175 |
with open('description.txt', 'r') as file:
|
176 |
description_txt = file.read()
|
177 |
-
|
178 |
for n in range(3): # Assuming maximum of 3 speakers
|
179 |
with gr.Tab(label=f'Speaker {n + 1}', visible=True):
|
180 |
-
with gr.TabItem(label=f'Interactive Interview'):
|
181 |
-
chatbot = gr.Chatbot(visible=False)
|
182 |
-
msg = gr.Textbox(visible=False)
|
183 |
-
clear = gr.Button("Clear", visible=False)
|
184 |
-
start_interview = gr.Button("Start Interview", visible=False)
|
185 |
-
|
186 |
-
# Update event listeners
|
187 |
-
msg.submit(process_message,
|
188 |
-
inputs=[msg, chatbot, gr.State(f'Speaker {n + 1}')],
|
189 |
-
outputs=[chatbot])
|
190 |
-
clear.click(lambda: [], None, chatbot, queue=False)
|
191 |
-
start_interview.click(start_new_interview,
|
192 |
-
inputs=[gr.Textbox(visible=False, label=f"General Impression Speaker {n+1}"), gr.State(f'Speaker {n + 1}')],
|
193 |
-
outputs=[chatbot])
|
194 |
-
|
195 |
with gr.TabItem(label=f'General Impression'):
|
196 |
column_components1 = [
|
197 |
gr.Markdown(visible=False),
|
@@ -213,7 +158,6 @@ with gr.Blocks() as iface:
|
|
213 |
gr.Plot(visible=False),
|
214 |
gr.Textbox(label="Personality Disorders Explanation")]
|
215 |
|
216 |
-
output_components.extend([chatbot, msg, clear, start_interview])
|
217 |
output_components.extend(column_components1)
|
218 |
output_components.extend(column_components2)
|
219 |
output_components.extend(column_components3)
|
@@ -227,22 +171,22 @@ with gr.Blocks() as iface:
|
|
227 |
gr.Image(preview_1, label="Scenes From A Marriage")
|
228 |
example_video_1 = gr.Video(example_video_1_path, label="Example 1", visible=False)
|
229 |
use_example_button_1 = gr.Button("Load Example 1")
|
230 |
-
|
231 |
with gr.Column(scale=1):
|
232 |
example_video_2_path = "examples/Billie Eilish.mp4"
|
233 |
preview_2 = get_middle_frame(example_video_2_path)
|
234 |
gr.Image(preview_2, label="Billie Eilish")
|
235 |
example_video_2 = gr.Video(example_video_2_path, label="Example 2", visible=False)
|
236 |
use_example_button_2 = gr.Button("Load Example 2")
|
237 |
-
|
238 |
with gr.Column(scale=1):
|
239 |
example_video_3_path = "examples/Elliot Rodger.mp4"
|
240 |
preview_3 = get_middle_frame(example_video_3_path)
|
241 |
gr.Image(preview_3, label="Elliot Rodger")
|
242 |
example_video_3 = gr.Video(example_video_3_path, label="Example 3", visible=False)
|
243 |
use_example_button_3 = gr.Button("Load Example 3")
|
244 |
-
|
245 |
-
gr.HTML("<div style='height: 20px;'></div>")
|
246 |
gr.Markdown(description_txt)
|
247 |
gr.HTML("<div style='height: 20px;'></div>")
|
248 |
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=900)
|
@@ -284,4 +228,4 @@ with gr.Blocks() as iface:
|
|
284 |
)
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
-
iface.launch()
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
from llm_loader import load_model
|
4 |
from processing import process_input
|
5 |
from transcription_diarization import diarize_audio
|
6 |
from visualization import create_charts
|
|
|
7 |
import time
|
8 |
import re
|
9 |
import cv2
|
10 |
import os
|
|
|
11 |
from config import openai_api_key
|
12 |
|
13 |
# Load the model
|
14 |
llm = load_model(openai_api_key)
|
15 |
|
16 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def analyze_video(video_path, progress=gr.Progress()):
|
18 |
start_time = time.time()
|
19 |
if not video_path:
|
|
|
32 |
charts, explanations, general_impressions = create_charts(results)
|
33 |
|
34 |
progress(1.0, desc="Charts generation complete.")
|
35 |
+
|
36 |
end_time = time.time()
|
37 |
execution_time = end_time - start_time
|
38 |
|
39 |
+
output_components = [] # transcript
|
40 |
+
|
41 |
output_components.append(f"Completed in {int(execution_time)} seconds.")
|
42 |
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
|
43 |
+
|
44 |
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
|
45 |
+
print(speaker_id)
|
46 |
speaker_explanations = explanations[speaker_id]
|
47 |
speaker_general_impression = general_impressions[speaker_id]
|
48 |
|
|
|
|
|
|
|
49 |
with gr.Tab(visible=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with gr.TabItem(label=f'General Impression'):
|
51 |
speaker_section1 = [
|
52 |
gr.Markdown(f"### {speaker_id}", visible=True),
|
|
|
74 |
gr.Textbox(value=speaker_explanations.get("personality", ""),
|
75 |
label="Personality Disorders Explanation", visible=True, lines=2)
|
76 |
]
|
77 |
+
|
|
|
78 |
output_components.extend(speaker_section1)
|
79 |
output_components.extend(speaker_section2)
|
80 |
output_components.extend(speaker_section3)
|
81 |
output_components.extend(speaker_section4)
|
82 |
|
83 |
# Pad with None for any missing speakers
|
84 |
+
while len(output_components) < 28:
|
85 |
+
output_components.extend([gr.update(visible=False)] * 9)
|
86 |
|
87 |
return output_components
|
88 |
|
89 |
+
|
90 |
def use_example_1():
|
91 |
return "examples/Scenes.From.A.Marriage.US.mp4"
|
92 |
+
|
93 |
+
|
94 |
def use_example_2():
|
95 |
return "examples/Billie Eilish.mp4"
|
96 |
+
|
97 |
+
|
98 |
def use_example_3():
|
99 |
return "examples/Elliot Rodger.mp4"
|
100 |
|
101 |
+
|
102 |
def get_middle_frame(video_path):
|
103 |
cap = cv2.VideoCapture(video_path)
|
104 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
112 |
return preview_path
|
113 |
return None
|
114 |
|
115 |
+
|
116 |
with gr.Blocks() as iface:
|
117 |
gr.Markdown("# Multiple Speakers Personality Analyzer")
|
118 |
+
gr.Markdown(
|
119 |
+
"This project provides an advanced AI system designed for diagnosing and profiling personality attributes from video content based on a single speaker or multiple speakers in a conversation.")
|
120 |
|
121 |
with gr.Row():
|
122 |
video_input = gr.Video(label="Upload Video")
|
123 |
+
|
124 |
analyze_button = gr.Button("Analyze")
|
125 |
+
|
126 |
# Create output components
|
127 |
output_components = []
|
|
|
128 |
# Add transcript output near the top
|
129 |
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
|
130 |
output_components.append(execution_box)
|
131 |
|
132 |
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
|
133 |
output_components.append(transcript)
|
134 |
+
|
135 |
with open('description.txt', 'r') as file:
|
136 |
description_txt = file.read()
|
137 |
+
|
138 |
for n in range(3): # Assuming maximum of 3 speakers
|
139 |
with gr.Tab(label=f'Speaker {n + 1}', visible=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
with gr.TabItem(label=f'General Impression'):
|
141 |
column_components1 = [
|
142 |
gr.Markdown(visible=False),
|
|
|
158 |
gr.Plot(visible=False),
|
159 |
gr.Textbox(label="Personality Disorders Explanation")]
|
160 |
|
|
|
161 |
output_components.extend(column_components1)
|
162 |
output_components.extend(column_components2)
|
163 |
output_components.extend(column_components3)
|
|
|
171 |
gr.Image(preview_1, label="Scenes From A Marriage")
|
172 |
example_video_1 = gr.Video(example_video_1_path, label="Example 1", visible=False)
|
173 |
use_example_button_1 = gr.Button("Load Example 1")
|
174 |
+
|
175 |
with gr.Column(scale=1):
|
176 |
example_video_2_path = "examples/Billie Eilish.mp4"
|
177 |
preview_2 = get_middle_frame(example_video_2_path)
|
178 |
gr.Image(preview_2, label="Billie Eilish")
|
179 |
example_video_2 = gr.Video(example_video_2_path, label="Example 2", visible=False)
|
180 |
use_example_button_2 = gr.Button("Load Example 2")
|
181 |
+
|
182 |
with gr.Column(scale=1):
|
183 |
example_video_3_path = "examples/Elliot Rodger.mp4"
|
184 |
preview_3 = get_middle_frame(example_video_3_path)
|
185 |
gr.Image(preview_3, label="Elliot Rodger")
|
186 |
example_video_3 = gr.Video(example_video_3_path, label="Example 3", visible=False)
|
187 |
use_example_button_3 = gr.Button("Load Example 3")
|
188 |
+
|
189 |
+
gr.HTML("<div style='height: 20px;'></div>")
|
190 |
gr.Markdown(description_txt)
|
191 |
gr.HTML("<div style='height: 20px;'></div>")
|
192 |
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=900)
|
|
|
228 |
)
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
+
iface.launch()
|