Spaces:
Runtime error
Runtime error
Update processing.py
Browse files- processing.py +15 -41
processing.py
CHANGED
|
@@ -7,7 +7,6 @@ from config import openai_api_key
|
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
from langchain.prompts import PromptTemplate
|
| 9 |
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
| 10 |
-
from langchain.schema.runnable import RunnablePassthrough
|
| 11 |
from typing import List, Any, Optional
|
| 12 |
from pydantic import Field
|
| 13 |
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
@@ -75,15 +74,12 @@ combined_retriever = CombinedRetriever(retrievers=[text_retriever, attachments_r
|
|
| 75 |
|
| 76 |
# Create prompt template for query generation
|
| 77 |
prompt_template = PromptTemplate(
|
| 78 |
-
input_variables=["question"
|
| 79 |
-
template="
|
| 80 |
)
|
| 81 |
|
| 82 |
# Create query generation chain
|
| 83 |
-
query_generation_chain =
|
| 84 |
-
input_variables=["question"],
|
| 85 |
-
template="Generate multiple search queries for the following question: {question}"
|
| 86 |
-
) | llm
|
| 87 |
|
| 88 |
# Create multi-query retrieval chain
|
| 89 |
def generate_queries(input):
|
|
@@ -96,19 +92,13 @@ def multi_query_retrieve(input):
|
|
| 96 |
for query in queries:
|
| 97 |
docs = combined_retriever.get_relevant_documents(query)
|
| 98 |
all_docs.extend(docs)
|
| 99 |
-
return
|
| 100 |
|
| 101 |
multi_query_retriever = RunnableLambda(multi_query_retrieve)
|
| 102 |
|
| 103 |
-
def format_docs(docs):
|
| 104 |
-
return "\n\n".join(doc.page_content for doc in docs["documents"])
|
| 105 |
-
|
| 106 |
# Create QA chain with multi-query retriever
|
| 107 |
qa_chain = (
|
| 108 |
-
{
|
| 109 |
-
"context": multi_query_retriever | format_docs,
|
| 110 |
-
"question": RunnablePassthrough()
|
| 111 |
-
}
|
| 112 |
| prompt_template
|
| 113 |
| llm
|
| 114 |
)
|
|
@@ -132,33 +122,13 @@ def process_input(input_text: str, llm):
|
|
| 132 |
|
| 133 |
truncated_input = truncate_text(input_text)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
retrieval_result = multi_query_retrieve(truncated_input)
|
| 137 |
|
| 138 |
-
|
| 139 |
-
print("Generated Queries:")
|
| 140 |
-
for query in retrieval_result["queries"]:
|
| 141 |
-
print(f"- {query}")
|
| 142 |
-
|
| 143 |
-
# Print the retrieved documents
|
| 144 |
-
print("\nRetrieved Documents:")
|
| 145 |
-
for i, doc in enumerate(retrieval_result["documents"], 1):
|
| 146 |
-
print(f"Document {i}:")
|
| 147 |
-
print(f"Content: {doc.page_content}")
|
| 148 |
-
print("-" * 50)
|
| 149 |
-
|
| 150 |
-
# Format the retrieved documents
|
| 151 |
-
formatted_docs = format_docs(retrieval_result)
|
| 152 |
-
|
| 153 |
-
# Generate the LLM response
|
| 154 |
-
llm_input = prompt_template.format(question=truncated_input, context=formatted_docs)
|
| 155 |
-
llm_output = llm.invoke(llm_input)
|
| 156 |
-
|
| 157 |
-
retrieved_knowledge = str(llm_output.content)
|
| 158 |
|
| 159 |
prompt = f"""
|
| 160 |
{general_task}
|
| 161 |
-
|
| 162 |
{general_impression_task}
|
| 163 |
Attachment Styles Task:
|
| 164 |
{attachments_task}
|
|
@@ -176,6 +146,11 @@ Please provide a comprehensive analysis for each speaker, including:
|
|
| 176 |
Respond with a JSON object containing an array of speaker analyses under the key 'speaker_analyses'. Each speaker analysis should include all four aspects mentioned above, however, General impressions must not be in json or dict format.
|
| 177 |
Analysis:"""
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
response = llm.invoke(prompt)
|
| 180 |
|
| 181 |
print("Raw LLM Model Output:")
|
|
@@ -196,7 +171,7 @@ Analysis:"""
|
|
| 196 |
speaker_id = f"Speaker {i}"
|
| 197 |
parsed_analysis = output_parser.parse_speaker_analysis(speaker_analysis)
|
| 198 |
|
| 199 |
-
|
| 200 |
general_impression = parsed_analysis.general_impression
|
| 201 |
if isinstance(general_impression, dict):
|
| 202 |
general_impression = json.dumps(general_impression)
|
|
@@ -235,5 +210,4 @@ Analysis:"""
|
|
| 235 |
'attachments': empty_analysis.attachment_style,
|
| 236 |
'bigfive': empty_analysis.big_five_traits,
|
| 237 |
'personalities': empty_analysis.personality_disorder
|
| 238 |
-
}}
|
| 239 |
-
|
|
|
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
from langchain.prompts import PromptTemplate
|
| 9 |
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
|
|
|
| 10 |
from typing import List, Any, Optional
|
| 11 |
from pydantic import Field
|
| 12 |
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
|
|
| 74 |
|
| 75 |
# Create prompt template for query generation
|
| 76 |
prompt_template = PromptTemplate(
|
| 77 |
+
input_variables=["question"],
|
| 78 |
+
template="Generate multiple search queries for the following question: {question}"
|
| 79 |
)
|
| 80 |
|
| 81 |
# Create query generation chain
|
| 82 |
+
query_generation_chain = prompt_template | llm
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Create multi-query retrieval chain
|
| 85 |
def generate_queries(input):
|
|
|
|
| 92 |
for query in queries:
|
| 93 |
docs = combined_retriever.get_relevant_documents(query)
|
| 94 |
all_docs.extend(docs)
|
| 95 |
+
return all_docs
|
| 96 |
|
| 97 |
multi_query_retriever = RunnableLambda(multi_query_retrieve)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
| 99 |
# Create QA chain with multi-query retriever
|
| 100 |
qa_chain = (
|
| 101 |
+
{"context": multi_query_retriever, "question": RunnablePassthrough()}
|
|
|
|
|
|
|
|
|
|
| 102 |
| prompt_template
|
| 103 |
| llm
|
| 104 |
)
|
|
|
|
| 122 |
|
| 123 |
truncated_input = truncate_text(input_text)
|
| 124 |
|
| 125 |
+
relevant_docs = qa_chain.invoke({"query": truncated_input})
|
|
|
|
| 126 |
|
| 127 |
+
retrieved_knowledge = str(relevant_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
prompt = f"""
|
| 130 |
{general_task}
|
| 131 |
+
Genral Impression Task:
|
| 132 |
{general_impression_task}
|
| 133 |
Attachment Styles Task:
|
| 134 |
{attachments_task}
|
|
|
|
| 146 |
Respond with a JSON object containing an array of speaker analyses under the key 'speaker_analyses'. Each speaker analysis should include all four aspects mentioned above, however, General impressions must not be in json or dict format.
|
| 147 |
Analysis:"""
|
| 148 |
|
| 149 |
+
#truncated_input_tokents_count = count_tokens(truncated_input)
|
| 150 |
+
#print('truncated_input_tokents_count:', truncated_input_tokents_count)
|
| 151 |
+
#input_tokens_count = count_tokens(prompt)
|
| 152 |
+
#print('input_tokens_count', input_tokens_count)
|
| 153 |
+
|
| 154 |
response = llm.invoke(prompt)
|
| 155 |
|
| 156 |
print("Raw LLM Model Output:")
|
|
|
|
| 171 |
speaker_id = f"Speaker {i}"
|
| 172 |
parsed_analysis = output_parser.parse_speaker_analysis(speaker_analysis)
|
| 173 |
|
| 174 |
+
# Convert general_impression to string if it's a dict or JSON object
|
| 175 |
general_impression = parsed_analysis.general_impression
|
| 176 |
if isinstance(general_impression, dict):
|
| 177 |
general_impression = json.dumps(general_impression)
|
|
|
|
| 210 |
'attachments': empty_analysis.attachment_style,
|
| 211 |
'bigfive': empty_analysis.big_five_traits,
|
| 212 |
'personalities': empty_analysis.personality_disorder
|
| 213 |
+
}}
|
|
|