Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
4 |
from langchain.llms import HuggingFacePipeline
|
5 |
from langchain_community.document_loaders import TextLoader
|
|
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.chains import RetrievalQA
|
@@ -83,12 +84,6 @@ attachments_knowledge = load_knowledge("knowledge/bartholomew_attachments_defini
|
|
83 |
bigfive_knowledge = load_knowledge("knowledge/bigfive_definitions.txt")
|
84 |
personalities_knowledge = load_knowledge("knowledge/personalities_definitions.txt")
|
85 |
|
86 |
-
# Create vector stores
|
87 |
-
embeddings = HuggingFaceEmbeddings()
|
88 |
-
attachments_db = FAISS.from_texts([attachments_knowledge], embeddings)
|
89 |
-
bigfive_db = FAISS.from_texts([bigfive_knowledge], embeddings)
|
90 |
-
personalities_db = FAISS.from_texts([personalities_knowledge], embeddings)
|
91 |
-
|
92 |
# Lazy initialization for retrieval chains
|
93 |
class LazyChains:
|
94 |
def __init__(self, lazy_llm):
|
@@ -101,9 +96,9 @@ class LazyChains:
|
|
101 |
def get_chains(self):
|
102 |
if self.attachments_chain is None:
|
103 |
llm = self.lazy_llm.get_llm()
|
104 |
-
self.attachments_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=
|
105 |
-
self.bigfive_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=
|
106 |
-
self.personalities_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=
|
107 |
return self.attachments_chain, self.bigfive_chain, self.personalities_chain
|
108 |
|
109 |
lazy_chains = LazyChains(lazy_llm)
|
@@ -117,15 +112,12 @@ def process_video(video_file):
|
|
117 |
temp_video_path = "temp_video.mp4"
|
118 |
shutil.copy2(video_file.name, temp_video_path)
|
119 |
|
120 |
-
# Initialize progress bar
|
121 |
-
progress = gr.Progress()
|
122 |
-
|
123 |
# Display progress bar for diarization
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
# The SRT file will be created with the same name as the video file but with .srt extension
|
131 |
srt_path = temp_video_path.replace(".mp4", "_combined.srt")
|
@@ -138,17 +130,17 @@ def process_video(video_file):
|
|
138 |
attachments_chain, bigfive_chain, personalities_chain = lazy_chains.get_chains()
|
139 |
|
140 |
# Process with LangChain and display progress bars
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
|
153 |
# Combine results
|
154 |
final_result = f"Attachments Analysis:\n{attachments_result}\n\nBig Five Analysis:\n{bigfive_result}\n\nPersonalities Analysis:\n{personalities_result}"
|
@@ -156,7 +148,7 @@ def process_video(video_file):
|
|
156 |
end_time = time.time()
|
157 |
execution_time = end_time - start_time
|
158 |
|
159 |
-
#
|
160 |
final_result_with_time = f"Execution Time: {execution_time:.2f} seconds\n\n{final_result}"
|
161 |
|
162 |
return final_result_with_time
|
@@ -165,10 +157,177 @@ def process_video(video_file):
|
|
165 |
iface = gr.Interface(
|
166 |
fn=process_video,
|
167 |
inputs=gr.File(label="Upload Video File"),
|
168 |
-
outputs=gr.Textbox(label="
|
169 |
title="Video Analysis with Meta-Llama-3.1-8B-Instruct",
|
170 |
description="Upload a video file to analyze using RAG techniques with Meta-Llama-3.1-8B-Instruct."
|
171 |
)
|
172 |
|
173 |
# Launch the app
|
174 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
4 |
from langchain.llms import HuggingFacePipeline
|
5 |
from langchain_community.document_loaders import TextLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.chains import RetrievalQA
|
|
|
84 |
bigfive_knowledge = load_knowledge("knowledge/bigfive_definitions.txt")
|
85 |
personalities_knowledge = load_knowledge("knowledge/personalities_definitions.txt")
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# Lazy initialization for retrieval chains
|
88 |
class LazyChains:
|
89 |
def __init__(self, lazy_llm):
|
|
|
96 |
def get_chains(self):
|
97 |
if self.attachments_chain is None:
|
98 |
llm = self.lazy_llm.get_llm()
|
99 |
+
self.attachments_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=attachments_knowledge)
|
100 |
+
self.bigfive_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=bigfive_knowledge)
|
101 |
+
self.personalities_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=personalities_knowledge)
|
102 |
return self.attachments_chain, self.bigfive_chain, self.personalities_chain
|
103 |
|
104 |
lazy_chains = LazyChains(lazy_llm)
|
|
|
112 |
temp_video_path = "temp_video.mp4"
|
113 |
shutil.copy2(video_file.name, temp_video_path)
|
114 |
|
|
|
|
|
|
|
115 |
# Display progress bar for diarization
|
116 |
+
with gr.Progress(0, 100, "Processing Diarization...") as progress_diarization:
|
117 |
+
# Process the video using the diarization script
|
118 |
+
language = "en"
|
119 |
+
diarization.process_video(temp_video_path, hf_token, language)
|
120 |
+
progress_diarization.update(100)
|
121 |
|
122 |
# The SRT file will be created with the same name as the video file but with .srt extension
|
123 |
srt_path = temp_video_path.replace(".mp4", "_combined.srt")
|
|
|
130 |
attachments_chain, bigfive_chain, personalities_chain = lazy_chains.get_chains()
|
131 |
|
132 |
# Process with LangChain and display progress bars
|
133 |
+
with gr.Progress(0, 100, "Processing Attachments Analysis...") as progress_attachments:
|
134 |
+
attachments_result = attachments_chain.run(srt_content)
|
135 |
+
progress_attachments.update(100)
|
136 |
|
137 |
+
with gr.Progress(0, 100, "Processing Big Five Analysis...") as progress_bigfive:
|
138 |
+
bigfive_result = bigfive_chain.run(srt_content)
|
139 |
+
progress_bigfive.update(100)
|
140 |
|
141 |
+
with gr.Progress(0, 100, "Processing Personalities Analysis...") as progress_personalities:
|
142 |
+
personalities_result = personalities_chain.run(srt_content)
|
143 |
+
progress_personalities.update(100)
|
144 |
|
145 |
# Combine results
|
146 |
final_result = f"Attachments Analysis:\n{attachments_result}\n\nBig Five Analysis:\n{bigfive_result}\n\nPersonalities Analysis:\n{personalities_result}"
|
|
|
148 |
end_time = time.time()
|
149 |
execution_time = end_time - start_time
|
150 |
|
151 |
+
# Prepend execution time to final result
|
152 |
final_result_with_time = f"Execution Time: {execution_time:.2f} seconds\n\n{final_result}"
|
153 |
|
154 |
return final_result_with_time
|
|
|
157 |
iface = gr.Interface(
|
158 |
fn=process_video,
|
159 |
inputs=gr.File(label="Upload Video File"),
|
160 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
161 |
title="Video Analysis with Meta-Llama-3.1-8B-Instruct",
|
162 |
description="Upload a video file to analyze using RAG techniques with Meta-Llama-3.1-8B-Instruct."
|
163 |
)
|
164 |
|
165 |
# Launch the app
|
166 |
+
iface.launch()
|
167 |
+
|
168 |
+
# Diarization script
|
169 |
+
import os
|
170 |
+
import torch
|
171 |
+
import math
|
172 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
173 |
+
from pyannote.audio import Pipeline
|
174 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
175 |
+
import librosa
|
176 |
+
import datetime
|
177 |
+
from collections import defaultdict
|
178 |
+
import numpy as np
|
179 |
+
import spaces
|
180 |
+
|
181 |
+
class LazyDiarizationPipeline:
|
182 |
+
def __init__(self):
|
183 |
+
self.pipeline = None
|
184 |
+
|
185 |
+
@spaces.GPU(duration=120)
|
186 |
+
def get_pipeline(self, diarization_access_token):
|
187 |
+
if self.pipeline is None:
|
188 |
+
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=diarization_access_token)
|
189 |
+
self.pipeline = self.pipeline.to(torch.device("cuda"))
|
190 |
+
return self.pipeline
|
191 |
+
|
192 |
+
lazy_diarization_pipeline = LazyDiarizationPipeline()
|
193 |
+
|
194 |
+
class LazyTranscriptionPipeline:
|
195 |
+
def __init__(self):
|
196 |
+
self.model = None
|
197 |
+
self.processor = None
|
198 |
+
self.pipe = None
|
199 |
+
|
200 |
+
@spaces.GPU(duration=120)
|
201 |
+
def get_pipeline(self, language):
|
202 |
+
if self.pipe is None:
|
203 |
+
model_id = "openai/whisper-large-v3"
|
204 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
205 |
+
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
|
206 |
+
)
|
207 |
+
self.model.to(torch.device("cuda"))
|
208 |
+
self.processor = AutoProcessor.from_pretrained(model_id)
|
209 |
+
self.pipe = pipeline(
|
210 |
+
"automatic-speech-recognition",
|
211 |
+
model=self.model,
|
212 |
+
tokenizer=self.processor.tokenizer,
|
213 |
+
feature_extractor=self.processor.feature_extractor,
|
214 |
+
max_new_tokens=128,
|
215 |
+
chunk_length_s=30,
|
216 |
+
batch_size=1,
|
217 |
+
return_timestamps=True,
|
218 |
+
torch_dtype=torch.float16,
|
219 |
+
device=torch.device("cuda"),
|
220 |
+
generate_kwargs={"language": language}
|
221 |
+
)
|
222 |
+
return self.pipe
|
223 |
+
|
224 |
+
lazy_transcription_pipeline = LazyTranscriptionPipeline()
|
225 |
+
|
226 |
+
def extract_audio(video_path, audio_path):
|
227 |
+
video = VideoFileClip(video_path)
|
228 |
+
audio = video.audio
|
229 |
+
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)
|
230 |
+
|
231 |
+
def format_timestamp(seconds):
|
232 |
+
return str(datetime.timedelta(seconds=seconds)).split('.')[0]
|
233 |
+
|
234 |
+
@spaces.GPU(duration=100)
|
235 |
+
def transcribe_audio(audio_path, language):
|
236 |
+
pipe = lazy_transcription_pipeline.get_pipeline(language)
|
237 |
+
|
238 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
239 |
+
duration = len(audio) / sr
|
240 |
+
n_chunks = math.ceil(duration / 30)
|
241 |
+
transcription_txt = ""
|
242 |
+
transcription_chunks = []
|
243 |
+
|
244 |
+
for i in range(n_chunks):
|
245 |
+
start = i * 30 * sr
|
246 |
+
end = min((i + 1) * 30 * sr, len(audio))
|
247 |
+
audio_chunk = audio[start:end]
|
248 |
+
|
249 |
+
# Convert the audio chunk to float32 numpy array
|
250 |
+
audio_chunk = (audio_chunk * 32767).astype(np.float32)
|
251 |
+
|
252 |
+
result = pipe(audio_chunk)
|
253 |
+
transcription_txt += result["text"]
|
254 |
+
for chunk in result["chunks"]:
|
255 |
+
start_time, end_time = chunk["timestamp"]
|
256 |
+
transcription_chunks.append({
|
257 |
+
"start": start_time + i * 30,
|
258 |
+
"end": end_time + i * 30,
|
259 |
+
"text": chunk["text"]
|
260 |
+
})
|
261 |
+
|
262 |
+
print(f"Transcription Progress: {int(((i + 1) / n_chunks) * 100)}%")
|
263 |
+
|
264 |
+
return transcription_txt, transcription_chunks
|
265 |
+
|
266 |
+
def create_combined_srt(transcription_chunks, diarization, output_path):
|
267 |
+
speaker_segments = []
|
268 |
+
speaker_map = {}
|
269 |
+
current_speaker_num = 1
|
270 |
+
|
271 |
+
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
272 |
+
if speaker not in speaker_map:
|
273 |
+
speaker_map[speaker] = f"Speaker {current_speaker_num}"
|
274 |
+
current_speaker_num += 1
|
275 |
+
speaker_segments.append((segment.start, segment.end, speaker_map[speaker]))
|
276 |
+
|
277 |
+
with open(output_path, 'w', encoding='utf-8') as srt_file:
|
278 |
+
for i, chunk in enumerate(transcription_chunks, 1):
|
279 |
+
start_time, end_time = chunk["start"], chunk["end"]
|
280 |
+
text = chunk["text"]
|
281 |
+
|
282 |
+
# Find the corresponding speaker
|
283 |
+
current_speaker = "Unknown"
|
284 |
+
for seg_start, seg_end, speaker in speaker_segments:
|
285 |
+
if seg_start <= start_time < seg_end:
|
286 |
+
current_speaker = speaker
|
287 |
+
break
|
288 |
+
|
289 |
+
# Format timecodes as h:mm:ss (without leading zeros for hours)
|
290 |
+
start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
|
291 |
+
end_str = format_timestamp(end_time).split('.')[0].lstrip('0')
|
292 |
+
|
293 |
+
srt_file.write(f"{i}\n")
|
294 |
+
srt_file.write(f"{{{current_speaker}}}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")
|
295 |
+
|
296 |
+
# Add dominant speaker information
|
297 |
+
speaker_durations = defaultdict(float)
|
298 |
+
for seg_start, seg_end, speaker in speaker_segments:
|
299 |
+
speaker_durations[speaker] += seg_end - seg_start
|
300 |
+
|
301 |
+
dominant_speaker = max(speaker_durations, key=speaker_durations.get)
|
302 |
+
dominant_duration = speaker_durations[dominant_speaker]
|
303 |
+
|
304 |
+
with open(output_path, 'a', encoding='utf-8') as srt_file:
|
305 |
+
dominant_duration_str = format_timestamp(dominant_duration).split('.')[0].lstrip('0')
|
306 |
+
srt_file.write(f"\nMost dominant speaker: {dominant_speaker} with total duration {dominant_duration_str}\n")
|
307 |
+
|
308 |
+
@spaces.GPU(duration=100)
|
309 |
+
def process_video(video_path, diarization_access_token, language):
|
310 |
+
base_name = os.path.splitext(video_path)[0]
|
311 |
+
audio_path = f"{base_name}.wav"
|
312 |
+
extract_audio(video_path, audio_path)
|
313 |
+
|
314 |
+
# Diarization
|
315 |
+
print("Performing diarization...")
|
316 |
+
pipeline = lazy_diarization_pipeline.get_pipeline(diarization_access_token)
|
317 |
+
diarization = pipeline(audio_path)
|
318 |
+
print("Diarization complete.")
|
319 |
+
|
320 |
+
# Transcription
|
321 |
+
print("Performing transcription...")
|
322 |
+
transcription, chunks = transcribe_audio(audio_path, language)
|
323 |
+
print("Transcription complete.")
|
324 |
+
|
325 |
+
# Create combined SRT file
|
326 |
+
combined_srt_path = f"{base_name}_combined.srt"
|
327 |
+
create_combined_srt(chunks, diarization, combined_srt_path)
|
328 |
+
print(f"Combined SRT file created and saved to {combined_srt_path}")
|
329 |
+
|
330 |
+
# Clean up
|
331 |
+
os.remove(audio_path)
|
332 |
+
|
333 |
+
return combined_srt_path
|