Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,13 @@ from config import openai_api_key
|
|
9 |
# Load the model
|
10 |
llm = load_model(openai_api_key)
|
11 |
|
12 |
-
|
13 |
def analyze_video(video_path, progress=gr.Progress()):
|
14 |
start_time = time.time()
|
15 |
if not video_path:
|
16 |
-
return
|
17 |
-
"
|
|
|
|
|
18 |
|
19 |
progress(0, desc="Starting analysis...")
|
20 |
progress(0.2, desc="Starting transcription and diarization")
|
@@ -33,33 +34,54 @@ def analyze_video(video_path, progress=gr.Progress()):
|
|
33 |
end_time = time.time()
|
34 |
execution_time = end_time - start_time
|
35 |
|
36 |
-
output_components =
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
|
40 |
-
|
41 |
-
for speaker_id, speaker_charts in charts.items():
|
42 |
speaker_explanations = explanations[speaker_id]
|
43 |
speaker_general_impression = general_impressions[speaker_id]
|
44 |
-
|
45 |
-
gr.Markdown(f"## {speaker_id}"
|
46 |
-
gr.Textbox(value=speaker_general_impression, label="General Impression", lines=3
|
47 |
-
gr.Plot(value=speaker_charts["attachment"]
|
48 |
-
gr.Textbox(value=speaker_explanations["attachment"], label="Attachment Styles Explanation"
|
49 |
-
gr.Plot(value=speaker_charts["dimensions"]
|
50 |
-
gr.Plot(value=speaker_charts["bigfive"]
|
51 |
-
gr.Textbox(value=speaker_explanations["bigfive"], label="Big Five Traits Explanation"
|
52 |
-
gr.Plot(value=speaker_charts["personality"]
|
53 |
-
gr.Textbox(value=speaker_explanations["personality"], label="Personality Disorders Explanation"
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Add execution info
|
58 |
-
output_components.append(
|
59 |
-
gr.Textbox(value=f"Completed in {int(execution_time)} seconds.", label="Execution Information", visible=True))
|
60 |
|
61 |
return output_components
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with gr.Blocks() as iface:
|
64 |
gr.Markdown("# AI Personality Detection")
|
65 |
|
@@ -73,39 +95,33 @@ with gr.Blocks() as iface:
|
|
73 |
example_video = gr.Video("examples/Scenes.From.A.Marriage.US.mp4", label="Example Video")
|
74 |
use_example_button = gr.Button("Use Example Video")
|
75 |
|
76 |
-
# Create
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
])
|
94 |
-
|
95 |
-
# Add transcript output component
|
96 |
-
transcript_output = gr.Textbox(label="Transcript", lines=10, visible=False)
|
97 |
-
output_components.append(transcript_output)
|
98 |
-
|
99 |
-
def use_example():
|
100 |
-
return "examples/Scenes.From.A.Marriage.US.mp4"
|
101 |
-
|
102 |
-
output_container = gr.Column()
|
103 |
|
104 |
analyze_button.click(
|
105 |
fn=analyze_video,
|
106 |
inputs=[video_input],
|
107 |
-
outputs=
|
108 |
show_progress=True
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
|
111 |
use_example_button.click(
|
@@ -115,8 +131,12 @@ with gr.Blocks() as iface:
|
|
115 |
).then(
|
116 |
fn=analyze_video,
|
117 |
inputs=[video_input],
|
118 |
-
outputs=
|
119 |
show_progress=True
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
|
122 |
if __name__ == "__main__":
|
|
|
9 |
# Load the model
|
10 |
llm = load_model(openai_api_key)
|
11 |
|
|
|
12 |
def analyze_video(video_path, progress=gr.Progress()):
|
13 |
start_time = time.time()
|
14 |
if not video_path:
|
15 |
+
return {
|
16 |
+
"transcript": gr.Textbox(value="Please upload a video file.", label="Error"),
|
17 |
+
"execution_info": gr.Textbox(value="Analysis not started.", label="Execution Information")
|
18 |
+
}
|
19 |
|
20 |
progress(0, desc="Starting analysis...")
|
21 |
progress(0.2, desc="Starting transcription and diarization")
|
|
|
34 |
end_time = time.time()
|
35 |
execution_time = end_time - start_time
|
36 |
|
37 |
+
output_components = {
|
38 |
+
"transcript": gr.Textbox(value=transcription, label="Transcript", lines=10),
|
39 |
+
}
|
40 |
|
41 |
+
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
|
|
|
|
|
|
|
42 |
speaker_explanations = explanations[speaker_id]
|
43 |
speaker_general_impression = general_impressions[speaker_id]
|
44 |
+
output_components.update({
|
45 |
+
f"speaker_{i}_header": gr.Markdown(f"## {speaker_id}"),
|
46 |
+
f"speaker_{i}_impression": gr.Textbox(value=speaker_general_impression, label="General Impression", lines=3),
|
47 |
+
f"speaker_{i}_attachment": gr.Plot(value=speaker_charts["attachment"]),
|
48 |
+
f"speaker_{i}_attachment_exp": gr.Textbox(value=speaker_explanations["attachment"], label="Attachment Styles Explanation"),
|
49 |
+
f"speaker_{i}_dimensions": gr.Plot(value=speaker_charts["dimensions"]),
|
50 |
+
f"speaker_{i}_bigfive": gr.Plot(value=speaker_charts["bigfive"]),
|
51 |
+
f"speaker_{i}_bigfive_exp": gr.Textbox(value=speaker_explanations["bigfive"], label="Big Five Traits Explanation"),
|
52 |
+
f"speaker_{i}_personality": gr.Plot(value=speaker_charts["personality"]),
|
53 |
+
f"speaker_{i}_personality_exp": gr.Textbox(value=speaker_explanations["personality"], label="Personality Disorders Explanation"),
|
54 |
+
})
|
55 |
+
|
56 |
+
output_components["execution_info"] = gr.Textbox(value=f"Completed in {int(execution_time)} seconds.", label="Execution Information")
|
|
|
|
|
|
|
57 |
|
58 |
return output_components
|
59 |
|
60 |
+
def use_example():
|
61 |
+
return "examples/Scenes.From.A.Marriage.US.mp4"
|
62 |
+
|
63 |
+
def update_output(components):
|
64 |
+
updates = []
|
65 |
+
updates.append(gr.update(value=components["transcript"].value, visible=True))
|
66 |
+
for i in range(1, 4):
|
67 |
+
if f"speaker_{i}_header" in components:
|
68 |
+
updates.append(gr.update(visible=True))
|
69 |
+
updates.extend([
|
70 |
+
gr.update(value=components[f"speaker_{i}_header"].value),
|
71 |
+
gr.update(value=components[f"speaker_{i}_impression"].value),
|
72 |
+
gr.update(value=components[f"speaker_{i}_attachment"].value),
|
73 |
+
gr.update(value=components[f"speaker_{i}_attachment_exp"].value),
|
74 |
+
gr.update(value=components[f"speaker_{i}_dimensions"].value),
|
75 |
+
gr.update(value=components[f"speaker_{i}_bigfive"].value),
|
76 |
+
gr.update(value=components[f"speaker_{i}_bigfive_exp"].value),
|
77 |
+
gr.update(value=components[f"speaker_{i}_personality"].value),
|
78 |
+
gr.update(value=components[f"speaker_{i}_personality_exp"].value),
|
79 |
+
])
|
80 |
+
else:
|
81 |
+
updates.append(gr.update(visible=False))
|
82 |
+
updates.append(gr.update(value=components["execution_info"].value, visible=True))
|
83 |
+
return updates
|
84 |
+
|
85 |
with gr.Blocks() as iface:
|
86 |
gr.Markdown("# AI Personality Detection")
|
87 |
|
|
|
95 |
example_video = gr.Video("examples/Scenes.From.A.Marriage.US.mp4", label="Example Video")
|
96 |
use_example_button = gr.Button("Use Example Video")
|
97 |
|
98 |
+
# Create placeholder components for output
|
99 |
+
with gr.Column() as output_container:
|
100 |
+
transcript_output = gr.Textbox(label="Transcript", lines=10, visible=False)
|
101 |
+
speaker_outputs = []
|
102 |
+
for i in range(1, 4): # Assuming a maximum of 3 speakers
|
103 |
+
with gr.Column(visible=False) as speaker_column:
|
104 |
+
gr.Markdown(f"## Speaker {i}")
|
105 |
+
gr.Textbox(label="General Impression", lines=3)
|
106 |
+
gr.Plot(label="Attachment Styles")
|
107 |
+
gr.Textbox(label="Attachment Styles Explanation")
|
108 |
+
gr.Plot(label="Attachment Dimensions")
|
109 |
+
gr.Plot(label="Big Five Traits")
|
110 |
+
gr.Textbox(label="Big Five Traits Explanation")
|
111 |
+
gr.Plot(label="Personality Disorders")
|
112 |
+
gr.Textbox(label="Personality Disorders Explanation")
|
113 |
+
speaker_outputs.append(speaker_column)
|
114 |
+
execution_info = gr.Textbox(label="Execution Information", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
analyze_button.click(
|
117 |
fn=analyze_video,
|
118 |
inputs=[video_input],
|
119 |
+
outputs=[transcript_output] + speaker_outputs + [execution_info],
|
120 |
show_progress=True
|
121 |
+
).then(
|
122 |
+
fn=update_output,
|
123 |
+
inputs=[gr.State(analyze_video)],
|
124 |
+
outputs=[transcript_output] + speaker_outputs + [execution_info],
|
125 |
)
|
126 |
|
127 |
use_example_button.click(
|
|
|
131 |
).then(
|
132 |
fn=analyze_video,
|
133 |
inputs=[video_input],
|
134 |
+
outputs=[transcript_output] + speaker_outputs + [execution_info],
|
135 |
show_progress=True
|
136 |
+
).then(
|
137 |
+
fn=update_output,
|
138 |
+
inputs=[gr.State(analyze_video)],
|
139 |
+
outputs=[transcript_output] + speaker_outputs + [execution_info],
|
140 |
)
|
141 |
|
142 |
if __name__ == "__main__":
|