from langchain.schema import HumanMessage from output_parser import attachment_parser, bigfive_parser, personality_parser from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from llm_loader import load_model from config import openai_api_key from langchain.chains import RetrievalQA import os import json embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key) knowledge_files = { "attachments": "knowledge/bartholomew_attachments_definitions.txt", "bigfive": "knowledge/bigfive_definitions.txt", "personalities": "knowledge/personalities_definitions.txt" } documents = [] for key, file_path in knowledge_files.items(): with open(file_path, 'r', encoding='utf-8') as file: content = file.read().strip() documents.append(content) faiss_index = FAISS.from_texts(documents, embedding_model) llm = load_model(openai_api_key) qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=faiss_index.as_retriever()) def load_text(file_path: str) -> str: with open(file_path, 'r', encoding='utf-8') as file: return file.read().strip() def truncate_text(text: str, max_tokens: int = 10000) -> str: words = text.split() if len(words) > max_tokens: return ' '.join(words[:max_tokens]) return text def process_input(input_text: str, llm): general_task = load_text("tasks/general_task.txt") attachments_task = load_text("tasks/Attachments_task.txt") bigfive_task = load_text("tasks/BigFive_task.txt") personalities_task = load_text("tasks/Personalities_task.txt") truncated_input = truncate_text(input_text) relevant_docs = qa_chain.invoke({"query": truncated_input}) if isinstance(relevant_docs, dict) and 'result' in relevant_docs: retrieved_knowledge = relevant_docs['result'] else: retrieved_knowledge = str(relevant_docs) prompt = f"""{general_task} Attachment Styles Task: {attachments_task} Big Five Traits Task: {bigfive_task} Personality Disorders Task: {personalities_task} Retrieved Knowledge: {retrieved_knowledge} Input: {truncated_input} Please provide a comprehensive analysis for each speaker, including: 1. Attachment styles (use the format from the Attachment Styles Task) 2. Big Five traits (use the format from the Big Five Traits Task) 3. Personality disorders (use the format from the Personality Disorders Task) Respond with a JSON object containing an array of speaker analyses under the key 'speaker_analyses'. Each speaker analysis should include all three aspects mentioned above. Analysis:""" messages = [HumanMessage(content=prompt)] response = llm.invoke(messages) print("Raw LLM Model Output:") print(response.content) try: content = response.content if content.startswith("```json"): content = content.split("```json", 1)[1] if content.endswith("```"): content = content.rsplit("```", 1)[0] parsed_json = json.loads(content.strip()) results = {} speaker_analyses = parsed_json.get('speaker_analyses', []) for i, speaker_analysis in enumerate(speaker_analyses, 1): speaker_id = f"Speaker {i}" results[speaker_id] = { 'attachments': attachment_parser.parse_object(speaker_analysis.get('attachment_styles', {})), 'bigfive': bigfive_parser.parse_object(speaker_analysis.get('big_five_traits', {})), 'personalities': personality_parser.parse_object(speaker_analysis.get('personality_disorders', {})) } if not results: print("Warning: No speaker analyses found in the parsed JSON.") return {"Speaker 1": { 'attachments': attachment_parser.parse_object({}), 'bigfive': bigfive_parser.parse_object({}), 'personalities': personality_parser.parse_object({}) }} return results except Exception as e: print(f"Error processing input: {e}") return {"Speaker 1": { 'attachments': attachment_parser.parse_object({}), 'bigfive': bigfive_parser.parse_object({}), 'personalities': personality_parser.parse_object({}) }}