import gradio as gr import plotly.graph_objs as go def extract_data_and_explanation(text): speakers_data = {} current_speaker = None explanation = "" for line in text.split('\n'): line = line.strip() if line.startswith("-----------------------"): if current_speaker and explanation: speakers_data[current_speaker]["explanation"] = explanation.strip() explanation = "" current_speaker = None continue if line.startswith("Speaker"): current_speaker = line.strip() speakers_data[current_speaker] = {} elif ':' in line and current_speaker: key, value = line.split(':', 1) key = key.strip() value = value.strip() if key.lower() == "explanation": explanation += value + " " else: try: speakers_data[current_speaker][key] = float(value) except ValueError: speakers_data[current_speaker][key] = value elif line and current_speaker and not line.startswith("Explanation"): explanation += line + " " if current_speaker and explanation: speakers_data[current_speaker]["explanation"] = explanation.strip() return speakers_data def create_bar_chart(data, title): if not data: return None fig = go.Figure(data=[go.Bar( x=list(data.keys()), y=list(data.values()), text=list(data.values()), textposition='auto', marker_color=['red', 'green', 'blue', 'yellow', 'purple', 'orange', 'pink', 'cyan', 'magenta', 'brown'][:len(data)] )]) fig.update_layout(title=title, xaxis_title="Traits", yaxis_title="Score") fig.update_xaxes(tickangle=45) return fig def create_radar_chart(data, title): if not data: return None values = [data.get('Avoidance', 0), data.get('Self', 0), data.get('Anxiety', 0), data.get('Others', 0)] fig = go.Figure(data=go.Scatterpolar( r=values, theta=['Avoidance', 'Self', 'Anxiety', 'Others'], fill='toself' )) fig.update_layout( polar=dict( radialaxis=dict(visible=True, range=[0, max(values + [10])]) ), showlegend=False, title=title ) return fig def update_visibility_and_charts(status, exec_time, lang, transcription, attachments, bigfive, personalities): outputs = [ gr.update(value=status, visible=True), gr.update(value=exec_time, visible=True), gr.update(value=lang, visible=True), gr.update(value=transcription, visible=True), ] all_analyses = [ ("Attachments", attachments), ("Big Five", bigfive), ("Personalities", personalities) ] all_speakers = set() for _, analysis_text in all_analyses: all_speakers.update(extract_data_and_explanation(analysis_text).keys()) for speaker_index, speaker in enumerate(sorted(all_speakers)[:3]): # Limit to 3 speakers speaker_outputs = [] for analysis_type, analysis_text in all_analyses: speakers_data = extract_data_and_explanation(analysis_text) data = speakers_data.get(speaker, {}) if data: if analysis_type == "Attachments": chart_data = {k: v for k, v in data.items() if k in ["Secured", "Anxious-Preoccupied", "Dismissive-Avoidant", "Fearful-Avoidant"] and isinstance(v, (int, float))} speaker_outputs.append(gr.update(value=create_bar_chart(chart_data, f"{analysis_type} Analysis - {speaker}") if chart_data else None, visible=bool(chart_data))) radar_data = {k: v for k, v in data.items() if k in ["Anxiety", "Avoidance", "Self", "Others"] and isinstance(v, (int, float))} speaker_outputs.append(gr.update(value=create_radar_chart(radar_data, f"Anxiety-Avoidance-Self-Others - {speaker}") if radar_data else None, visible=bool(radar_data))) else: chart_data = {k: v for k, v in data.items() if k not in ["explanation"] and isinstance(v, (int, float))} speaker_outputs.append(gr.update(value=create_bar_chart(chart_data, f"{analysis_type} Analysis - {speaker}") if chart_data else None, visible=bool(chart_data))) speaker_outputs.append(gr.update(visible=False)) # Placeholder for consistency with Attachments explanation = data.get("explanation", "No explanation provided.") speaker_outputs.append(gr.update(value=explanation, visible=True, label=f"{analysis_type} Explanation - {speaker}")) else: speaker_outputs.extend([gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]) outputs.extend(speaker_outputs) # Hide unused speaker components for _ in range(3 - len(all_speakers)): outputs.extend([gr.update(visible=False)] * 9) # 3 analyses * (2 charts + 1 explanation) return outputs