Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,20 +3,17 @@ import math
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
6 |
-
from moviepy.editor import
|
7 |
|
8 |
-
def transcribe(
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
-
|
12 |
model_id = "openai/whisper-large-v3"
|
13 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
14 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
15 |
)
|
16 |
model.to(device)
|
17 |
-
|
18 |
processor = AutoProcessor.from_pretrained(model_id)
|
19 |
-
|
20 |
pipe = pipeline(
|
21 |
"automatic-speech-recognition",
|
22 |
model=model,
|
@@ -30,16 +27,16 @@ def transcribe(audio_file, transcribe_to_text, transcribe_to_srt, language):
|
|
30 |
device=device,
|
31 |
generate_kwargs={"language": language}
|
32 |
)
|
33 |
-
|
34 |
# Handle both file path (str) and file object
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
n_chunks = math.ceil(duration / 30)
|
39 |
-
|
40 |
transcription_txt = ""
|
41 |
transcription_srt = []
|
42 |
-
|
43 |
for i in range(n_chunks):
|
44 |
start = i * 30
|
45 |
end = min((i + 1) * 30, duration)
|
@@ -47,11 +44,9 @@ def transcribe(audio_file, transcribe_to_text, transcribe_to_srt, language):
|
|
47 |
|
48 |
temp_file_path = f"temp_audio_{i}.wav"
|
49 |
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
|
50 |
-
|
51 |
with open(temp_file_path, "rb") as temp_file:
|
52 |
result = pipe(temp_file_path)
|
53 |
transcription_txt += result["text"]
|
54 |
-
|
55 |
if transcribe_to_srt:
|
56 |
for chunk in result["chunks"]:
|
57 |
start_time, end_time = chunk["timestamp"]
|
@@ -60,20 +55,16 @@ def transcribe(audio_file, transcribe_to_text, transcribe_to_srt, language):
|
|
60 |
"end": end_time + i * 30,
|
61 |
"text": chunk["text"]
|
62 |
})
|
63 |
-
|
64 |
os.remove(temp_file_path)
|
65 |
-
|
66 |
yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%"
|
67 |
-
|
68 |
output = ""
|
69 |
if transcribe_to_text:
|
70 |
output += "Text Transcription:\n" + transcription_txt + "\n\n"
|
71 |
-
|
72 |
if transcribe_to_srt:
|
73 |
output += "SRT Transcription:\n"
|
74 |
for i, sub in enumerate(transcription_srt, 1):
|
75 |
output += f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n"
|
76 |
-
|
77 |
yield output
|
78 |
|
79 |
def format_time(seconds):
|
@@ -84,14 +75,14 @@ def format_time(seconds):
|
|
84 |
iface = gr.Interface(
|
85 |
fn=transcribe,
|
86 |
inputs=[
|
87 |
-
gr.
|
88 |
gr.Checkbox(label="Transcribe to Text"),
|
89 |
gr.Checkbox(label="Transcribe to SRT"),
|
90 |
gr.Dropdown(choices=['en', 'he', 'it', 'fr', 'de', 'zh', 'ar'], label="Language")
|
91 |
],
|
92 |
outputs="text",
|
93 |
-
title="WhisperCap Transcription",
|
94 |
-
description="Upload
|
95 |
)
|
96 |
|
97 |
iface.launch()
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
6 |
+
from moviepy.editor import VideoFileClip
|
7 |
|
8 |
+
def transcribe(video_file, transcribe_to_text, transcribe_to_srt, language):
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
11 |
model_id = "openai/whisper-large-v3"
|
12 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
13 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
14 |
)
|
15 |
model.to(device)
|
|
|
16 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
17 |
pipe = pipeline(
|
18 |
"automatic-speech-recognition",
|
19 |
model=model,
|
|
|
27 |
device=device,
|
28 |
generate_kwargs={"language": language}
|
29 |
)
|
30 |
+
|
31 |
# Handle both file path (str) and file object
|
32 |
+
video_path = video_file if isinstance(video_file, str) else video_file.name
|
33 |
+
video = VideoFileClip(video_path)
|
34 |
+
audio = video.audio
|
35 |
+
duration = video.duration
|
36 |
n_chunks = math.ceil(duration / 30)
|
|
|
37 |
transcription_txt = ""
|
38 |
transcription_srt = []
|
39 |
+
|
40 |
for i in range(n_chunks):
|
41 |
start = i * 30
|
42 |
end = min((i + 1) * 30, duration)
|
|
|
44 |
|
45 |
temp_file_path = f"temp_audio_{i}.wav"
|
46 |
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
|
|
|
47 |
with open(temp_file_path, "rb") as temp_file:
|
48 |
result = pipe(temp_file_path)
|
49 |
transcription_txt += result["text"]
|
|
|
50 |
if transcribe_to_srt:
|
51 |
for chunk in result["chunks"]:
|
52 |
start_time, end_time = chunk["timestamp"]
|
|
|
55 |
"end": end_time + i * 30,
|
56 |
"text": chunk["text"]
|
57 |
})
|
|
|
58 |
os.remove(temp_file_path)
|
|
|
59 |
yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%"
|
60 |
+
|
61 |
output = ""
|
62 |
if transcribe_to_text:
|
63 |
output += "Text Transcription:\n" + transcription_txt + "\n\n"
|
|
|
64 |
if transcribe_to_srt:
|
65 |
output += "SRT Transcription:\n"
|
66 |
for i, sub in enumerate(transcription_srt, 1):
|
67 |
output += f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n"
|
|
|
68 |
yield output
|
69 |
|
70 |
def format_time(seconds):
|
|
|
75 |
iface = gr.Interface(
|
76 |
fn=transcribe,
|
77 |
inputs=[
|
78 |
+
gr.Video(type="filepath"),
|
79 |
gr.Checkbox(label="Transcribe to Text"),
|
80 |
gr.Checkbox(label="Transcribe to SRT"),
|
81 |
gr.Dropdown(choices=['en', 'he', 'it', 'fr', 'de', 'zh', 'ar'], label="Language")
|
82 |
],
|
83 |
outputs="text",
|
84 |
+
title="WhisperCap Video Transcription",
|
85 |
+
description="Upload a video file to transcribe its audio using Whisper.",
|
86 |
)
|
87 |
|
88 |
iface.launch()
|