reab5555 commited on
Commit
12f25c0
·
verified ·
1 Parent(s): e8df033

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import gradio as gr
4
+ import torch
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
6
+ from moviepy.editor import AudioFileClip
7
+
8
+ def transcribe(audio_file, transcribe_to_text, transcribe_to_srt, language):
9
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
11
+
12
+ model_id = "openai/whisper-large-v3"
13
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
14
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
15
+ )
16
+ model.to(device)
17
+
18
+ processor = AutoProcessor.from_pretrained(model_id)
19
+
20
+ pipe = pipeline(
21
+ "automatic-speech-recognition",
22
+ model=model,
23
+ tokenizer=processor.tokenizer,
24
+ feature_extractor=processor.feature_extractor,
25
+ max_new_tokens=128,
26
+ chunk_length_s=30,
27
+ batch_size=2,
28
+ return_timestamps=True,
29
+ torch_dtype=torch_dtype,
30
+ device=device,
31
+ generate_kwargs={"language": language}
32
+ )
33
+
34
+ audio = AudioFileClip(audio_file.name)
35
+ duration = audio.duration
36
+ n_chunks = math.ceil(duration / 30)
37
+
38
+ transcription_txt = ""
39
+ transcription_srt = []
40
+
41
+ for i in range(n_chunks):
42
+ start = i * 30
43
+ end = min((i + 1) * 30, duration)
44
+ audio_chunk = audio.subclip(start, end)
45
+
46
+ temp_file_path = f"temp_audio_{i}.wav"
47
+ audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
48
+
49
+ with open(temp_file_path, "rb") as temp_file:
50
+ result = pipe(temp_file_path)
51
+ transcription_txt += result["text"]
52
+
53
+ if transcribe_to_srt:
54
+ for chunk in result["chunks"]:
55
+ start_time, end_time = chunk["timestamp"]
56
+ transcription_srt.append({
57
+ "start": start_time + i * 30,
58
+ "end": end_time + i * 30,
59
+ "text": chunk["text"]
60
+ })
61
+
62
+ os.remove(temp_file_path)
63
+
64
+ yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%"
65
+
66
+ output = ""
67
+ if transcribe_to_text:
68
+ output += "Text Transcription:\n" + transcription_txt + "\n\n"
69
+
70
+ if transcribe_to_srt:
71
+ output += "SRT Transcription:\n"
72
+ for i, sub in enumerate(transcription_srt, 1):
73
+ output += f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n"
74
+
75
+ yield output
76
+
77
+ def format_time(seconds):
78
+ m, s = divmod(seconds, 60)
79
+ h, m = divmod(m, 60)
80
+ return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
81
+
82
+ iface = gr.Interface(
83
+ fn=transcribe,
84
+ inputs=[
85
+ gr.Audio(type="filepath"),
86
+ gr.Checkbox(label="Transcribe to Text"),
87
+ gr.Checkbox(label="Transcribe to SRT"),
88
+ gr.Dropdown(choices=['en', 'he', 'it', 'fr', 'de', 'zh', 'ar'], label="Language")
89
+ ],
90
+ outputs="text",
91
+ title="WhisperCap Transcription",
92
+ description="Upload an audio file to transcribe it using Whisper.",
93
+ )
94
+
95
+ iface.launch()