Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,145 +6,230 @@ import torch
|
|
6 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
7 |
from moviepy.editor import VideoFileClip
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
)
|
16 |
-
model.to(device)
|
17 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
18 |
-
pipe = pipeline(
|
19 |
-
"automatic-speech-recognition",
|
20 |
-
model=model,
|
21 |
-
tokenizer=processor.tokenizer,
|
22 |
-
feature_extractor=processor.feature_extractor,
|
23 |
-
max_new_tokens=128,
|
24 |
-
chunk_length_s=10,
|
25 |
-
batch_size=2,
|
26 |
-
return_timestamps=True,
|
27 |
-
torch_dtype=torch_dtype,
|
28 |
-
device=device,
|
29 |
-
)
|
30 |
-
|
31 |
-
if video_file is None:
|
32 |
-
yield "Error: No video file provided.", None
|
33 |
-
return
|
34 |
-
|
35 |
-
video_path = video_file.name if hasattr(video_file, 'name') else video_file
|
36 |
-
try:
|
37 |
-
video = VideoFileClip(video_path)
|
38 |
-
except Exception as e:
|
39 |
-
yield f"Error processing video file: {str(e)}", None
|
40 |
-
return
|
41 |
-
|
42 |
-
audio = video.audio
|
43 |
-
duration = video.duration
|
44 |
-
n_chunks = math.ceil(duration / 10)
|
45 |
-
transcription_txt = ""
|
46 |
-
transcription_srt = []
|
47 |
-
|
48 |
-
for i in range(n_chunks):
|
49 |
-
start = i * 10
|
50 |
-
end = min((i + 1) * 10, duration)
|
51 |
-
audio_chunk = audio.subclip(start, end)
|
52 |
-
|
53 |
-
temp_file_path = f"temp_audio_{i}.wav"
|
54 |
-
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
|
55 |
-
|
56 |
-
with open(temp_file_path, "rb") as temp_file:
|
57 |
-
result = pipe(temp_file_path, generate_kwargs={"language": language})
|
58 |
-
transcription_txt += result["text"]
|
59 |
-
if transcribe_to_srt:
|
60 |
-
for chunk in result["chunks"]:
|
61 |
-
start_time, end_time = chunk["timestamp"]
|
62 |
-
if start_time is not None and end_time is not None:
|
63 |
-
transcription_srt.append({
|
64 |
-
"start": start_time + i * 10,
|
65 |
-
"end": end_time + i * 10,
|
66 |
-
"text": chunk["text"]
|
67 |
-
})
|
68 |
-
else:
|
69 |
-
print(f"Warning: Invalid timestamp for chunk: {chunk}")
|
70 |
-
|
71 |
-
os.remove(temp_file_path)
|
72 |
-
yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%", None
|
73 |
-
|
74 |
-
output = ""
|
75 |
-
srt_file_path = None
|
76 |
-
if transcribe_to_text:
|
77 |
-
output += "Text Transcription:\n" + transcription_txt + "\n\n"
|
78 |
-
if transcribe_to_srt:
|
79 |
-
output += "SRT Transcription:\n"
|
80 |
-
srt_content = ""
|
81 |
-
for i, sub in enumerate(transcription_srt, 1):
|
82 |
-
srt_entry = f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n"
|
83 |
-
srt_content += srt_entry
|
84 |
-
|
85 |
-
# Remove duplicate captions and keep only the last occurrence
|
86 |
-
cleaned_srt_content = clean_srt_duplicates(srt_content)
|
87 |
-
|
88 |
-
# Save SRT content to a file
|
89 |
-
srt_file_path = "transcription.srt"
|
90 |
-
with open(srt_file_path, "w", encoding="utf-8") as srt_file:
|
91 |
-
srt_file.write(cleaned_srt_content)
|
92 |
-
|
93 |
-
output += f"\nSRT file saved as: {srt_file_path}"
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def format_time(seconds):
|
|
|
98 |
m, s = divmod(seconds, 60)
|
99 |
h, m = divmod(m, 60)
|
100 |
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
|
101 |
|
102 |
-
def clean_srt_duplicates(srt_content, time_threshold=30):
|
103 |
"""
|
104 |
-
|
105 |
keeping only the last occurrence.
|
106 |
"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Pattern to match each SRT block
|
111 |
-
srt_pattern = re.compile(r"(\d+)\n(\d{2}:\d{2}:\d{2},\d{3}) --> (\d{2}:\d{2}:\d{2},\d{3})\n(.+)", re.DOTALL)
|
112 |
|
113 |
-
# Store blocks
|
114 |
blocks = []
|
|
|
|
|
115 |
for match in srt_pattern.finditer(srt_content):
|
116 |
index, start_time, end_time, text = match.groups()
|
117 |
text = text.strip()
|
118 |
|
119 |
-
# Convert start time to seconds
|
120 |
-
start_seconds =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
blocks.append((index, start_time, end_time, text))
|
126 |
-
last_seen[text] = start_seconds # Update last occurrence time
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
iface = gr.Interface(
|
135 |
fn=transcribe,
|
136 |
inputs=[
|
137 |
-
gr.Video(),
|
138 |
-
gr.Checkbox(label="Transcribe to Text"),
|
139 |
-
gr.Checkbox(label="Transcribe to SRT"),
|
140 |
-
gr.Dropdown(
|
|
|
|
|
|
|
|
|
141 |
],
|
142 |
outputs=[
|
143 |
gr.Textbox(label="Transcription Output"),
|
144 |
gr.File(label="Download SRT")
|
145 |
],
|
146 |
title="WhisperCap Video Transcription",
|
147 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
|
150 |
-
|
|
|
|
|
|
6 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
7 |
from moviepy.editor import VideoFileClip
|
8 |
|
9 |
+
def timestamp_to_seconds(timestamp):
|
10 |
+
"""Convert SRT timestamp to seconds"""
|
11 |
+
# Split hours, minutes, and seconds (with milliseconds)
|
12 |
+
hours, minutes, rest = timestamp.split(':')
|
13 |
+
# Handle seconds and milliseconds (separated by comma)
|
14 |
+
seconds, milliseconds = rest.split(',')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
total_seconds = (
|
17 |
+
int(hours) * 3600 +
|
18 |
+
int(minutes) * 60 +
|
19 |
+
int(seconds) +
|
20 |
+
int(milliseconds) / 1000
|
21 |
+
)
|
22 |
+
return total_seconds
|
23 |
|
24 |
def format_time(seconds):
|
25 |
+
"""Convert seconds to SRT timestamp format"""
|
26 |
m, s = divmod(seconds, 60)
|
27 |
h, m = divmod(m, 60)
|
28 |
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
|
29 |
|
30 |
+
def clean_srt_duplicates(srt_content, time_threshold=30, similarity_threshold=0.9):
|
31 |
"""
|
32 |
+
Remove duplicate captions within a specified time range in SRT format,
|
33 |
keeping only the last occurrence.
|
34 |
"""
|
35 |
+
# Pattern to match each SRT block, including newlines in text
|
36 |
+
srt_pattern = re.compile(r"(\d+)\n(\d{2}:\d{2}:\d{2},\d{3}) --> (\d{2}:\d{2}:\d{2},\d{3})\n(.*?)(?=\n\n|\Z)", re.DOTALL)
|
|
|
|
|
|
|
37 |
|
38 |
+
# Store blocks with their timing information
|
39 |
blocks = []
|
40 |
+
seen_texts = {} # Track last occurrence of each text
|
41 |
+
|
42 |
for match in srt_pattern.finditer(srt_content):
|
43 |
index, start_time, end_time, text = match.groups()
|
44 |
text = text.strip()
|
45 |
|
46 |
+
# Convert start time to seconds for comparison
|
47 |
+
start_seconds = timestamp_to_seconds(start_time)
|
48 |
+
|
49 |
+
# Check for similar existing captions within the time threshold
|
50 |
+
is_duplicate = False
|
51 |
+
for existing_text, (existing_time, existing_idx) in list(seen_texts.items()):
|
52 |
+
time_diff = abs(start_seconds - existing_time)
|
53 |
+
|
54 |
+
# Check if texts are identical or very similar
|
55 |
+
if (text == existing_text or
|
56 |
+
(len(text) > 0 and len(existing_text) > 0 and
|
57 |
+
(text in existing_text or existing_text in text))):
|
58 |
+
if time_diff < time_threshold:
|
59 |
+
# Remove the previous occurrence if this is a duplicate
|
60 |
+
blocks = [b for b in blocks if b[0] != str(existing_idx)]
|
61 |
+
is_duplicate = True
|
62 |
+
break
|
63 |
+
|
64 |
+
if not is_duplicate or start_seconds - seen_texts.get(text, (0, 0))[0] >= time_threshold:
|
65 |
+
blocks.append((index, start_time, end_time, text))
|
66 |
+
seen_texts[text] = (start_seconds, len(blocks))
|
67 |
+
|
68 |
+
# Rebuild the SRT content with proper formatting and sequential numbering
|
69 |
+
cleaned_srt = []
|
70 |
+
for i, (_, start_time, end_time, text) in enumerate(blocks, 1):
|
71 |
+
cleaned_srt.append(f"{i}\n{start_time} --> {end_time}\n{text}\n\n")
|
72 |
+
|
73 |
+
return ''.join(cleaned_srt)
|
74 |
+
|
75 |
+
def transcribe(video_file, transcribe_to_text, transcribe_to_srt, language):
|
76 |
+
"""
|
77 |
+
Main transcription function that processes video files and generates
|
78 |
+
text and/or SRT transcriptions.
|
79 |
+
"""
|
80 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
81 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
82 |
+
model_id = "openai/whisper-large-v3"
|
83 |
+
|
84 |
+
try:
|
85 |
+
# Initialize model and processor
|
86 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
87 |
+
model_id,
|
88 |
+
torch_dtype=torch_dtype,
|
89 |
+
low_cpu_mem_usage=True,
|
90 |
+
use_safetensors=True
|
91 |
+
)
|
92 |
+
model.to(device)
|
93 |
+
|
94 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
95 |
+
|
96 |
+
pipe = pipeline(
|
97 |
+
"automatic-speech-recognition",
|
98 |
+
model=model,
|
99 |
+
tokenizer=processor.tokenizer,
|
100 |
+
feature_extractor=processor.feature_extractor,
|
101 |
+
max_new_tokens=128,
|
102 |
+
chunk_length_s=10,
|
103 |
+
batch_size=2,
|
104 |
+
return_timestamps=True,
|
105 |
+
torch_dtype=torch_dtype,
|
106 |
+
device=device,
|
107 |
+
)
|
108 |
|
109 |
+
if video_file is None:
|
110 |
+
yield "Error: No video file provided.", None
|
111 |
+
return
|
|
|
|
|
112 |
|
113 |
+
# Handle video file path
|
114 |
+
video_path = video_file.name if hasattr(video_file, 'name') else video_file
|
115 |
+
|
116 |
+
try:
|
117 |
+
video = VideoFileClip(video_path)
|
118 |
+
except Exception as e:
|
119 |
+
yield f"Error processing video file: {str(e)}", None
|
120 |
+
return
|
121 |
|
122 |
+
# Process video in chunks
|
123 |
+
audio = video.audio
|
124 |
+
duration = video.duration
|
125 |
+
n_chunks = math.ceil(duration / 10)
|
126 |
+
transcription_txt = ""
|
127 |
+
transcription_srt = []
|
128 |
+
|
129 |
+
for i in range(n_chunks):
|
130 |
+
start = i * 10
|
131 |
+
end = min((i + 1) * 10, duration)
|
132 |
+
audio_chunk = audio.subclip(start, end)
|
133 |
+
|
134 |
+
temp_file_path = f"temp_audio_{i}.wav"
|
135 |
+
|
136 |
+
try:
|
137 |
+
# Save audio chunk to temporary file
|
138 |
+
audio_chunk.write_audiofile(
|
139 |
+
temp_file_path,
|
140 |
+
codec='pcm_s16le',
|
141 |
+
verbose=False,
|
142 |
+
logger=None
|
143 |
+
)
|
144 |
+
|
145 |
+
# Process audio chunk
|
146 |
+
with open(temp_file_path, "rb") as temp_file:
|
147 |
+
result = pipe(
|
148 |
+
temp_file_path,
|
149 |
+
generate_kwargs={"language": language}
|
150 |
+
)
|
151 |
+
|
152 |
+
transcription_txt += result["text"]
|
153 |
+
|
154 |
+
if transcribe_to_srt:
|
155 |
+
for chunk in result["chunks"]:
|
156 |
+
start_time, end_time = chunk["timestamp"]
|
157 |
+
if start_time is not None and end_time is not None:
|
158 |
+
transcription_srt.append({
|
159 |
+
"start": start_time + i * 10,
|
160 |
+
"end": end_time + i * 10,
|
161 |
+
"text": chunk["text"].strip()
|
162 |
+
})
|
163 |
+
|
164 |
+
finally:
|
165 |
+
# Clean up temporary file
|
166 |
+
if os.path.exists(temp_file_path):
|
167 |
+
os.remove(temp_file_path)
|
168 |
+
|
169 |
+
# Report progress
|
170 |
+
yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%", None
|
171 |
+
|
172 |
+
# Prepare output
|
173 |
+
output = ""
|
174 |
+
srt_file_path = None
|
175 |
+
|
176 |
+
if transcribe_to_text:
|
177 |
+
output += "Text Transcription:\n" + transcription_txt.strip() + "\n\n"
|
178 |
+
|
179 |
+
if transcribe_to_srt:
|
180 |
+
output += "SRT Transcription:\n"
|
181 |
+
srt_content = ""
|
182 |
+
|
183 |
+
# Generate initial SRT content
|
184 |
+
for i, sub in enumerate(transcription_srt, 1):
|
185 |
+
srt_entry = f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n"
|
186 |
+
srt_content += srt_entry
|
187 |
+
|
188 |
+
# Clean up duplicates
|
189 |
+
cleaned_srt_content = clean_srt_duplicates(srt_content)
|
190 |
+
|
191 |
+
# Save SRT content to file
|
192 |
+
srt_file_path = "transcription.srt"
|
193 |
+
with open(srt_file_path, "w", encoding="utf-8") as srt_file:
|
194 |
+
srt_file.write(cleaned_srt_content)
|
195 |
+
|
196 |
+
output += f"\nSRT file saved as: {srt_file_path}"
|
197 |
+
|
198 |
+
# Clean up video object
|
199 |
+
video.close()
|
200 |
+
|
201 |
+
yield output, srt_file_path
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
yield f"Error during transcription: {str(e)}", None
|
205 |
|
206 |
+
# Create Gradio interface
|
207 |
iface = gr.Interface(
|
208 |
fn=transcribe,
|
209 |
inputs=[
|
210 |
+
gr.Video(label="Upload Video"),
|
211 |
+
gr.Checkbox(label="Transcribe to Text", value=True),
|
212 |
+
gr.Checkbox(label="Transcribe to SRT", value=True),
|
213 |
+
gr.Dropdown(
|
214 |
+
choices=['en', 'he', 'it', 'es', 'fr', 'de', 'zh', 'ar'],
|
215 |
+
value='en',
|
216 |
+
label="Language"
|
217 |
+
)
|
218 |
],
|
219 |
outputs=[
|
220 |
gr.Textbox(label="Transcription Output"),
|
221 |
gr.File(label="Download SRT")
|
222 |
],
|
223 |
title="WhisperCap Video Transcription",
|
224 |
+
description="""
|
225 |
+
Upload a video file to transcribe its audio using Whisper Large V3.
|
226 |
+
You can generate both text and SRT format transcriptions.
|
227 |
+
Supported languages: English (en), Hebrew (he), Italian (it), Spanish (es),
|
228 |
+
French (fr), German (de), Chinese (zh), Arabic (ar)
|
229 |
+
""",
|
230 |
+
allow_flagging="never"
|
231 |
)
|
232 |
|
233 |
+
# Launch the interface
|
234 |
+
if __name__ == "__main__":
|
235 |
+
iface.launch(share=True)
|