import os import math import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from moviepy.editor import VideoFileClip, concatenate_audioclips def transcribe(video_file, transcribe_to_text, transcribe_to_srt, language): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=10, # Shorter chunk length to prevent overly long captions batch_size=2, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) if video_file is None: yield "Error: No video file provided.", None return video_path = video_file.name if hasattr(video_file, 'name') else video_file try: video = VideoFileClip(video_path) except Exception as e: yield f"Error processing video file: {str(e)}", None return audio = video.audio duration = video.duration n_chunks = math.ceil(duration / 10) # Split into 10-second chunks transcription_txt = "" transcription_srt = [] for i in range(n_chunks): start = i * 10 end = min((i + 1) * 10, duration) audio_chunk = audio.subclip(start, end) temp_file_path = f"temp_audio_{i}.wav" audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le') with open(temp_file_path, "rb") as temp_file: result = pipe(temp_file_path, generate_kwargs={"language": language}) transcription_txt += result["text"] if transcribe_to_srt: for chunk in result["chunks"]: start_time, end_time = chunk["timestamp"] if start_time is not None and end_time is not None: transcription_srt.append({ "start": start_time + i * 10, "end": end_time + i * 10, "text": chunk["text"] }) else: print(f"Warning: Invalid timestamp for chunk: {chunk}") os.remove(temp_file_path) yield f"Progress: {int(((i + 1) / n_chunks) * 100)}%", None output = "" srt_file_path = None if transcribe_to_text: output += "Text Transcription:\n" + transcription_txt + "\n\n" if transcribe_to_srt: output += "SRT Transcription:\n" srt_content = "" for i, sub in enumerate(transcription_srt, 1): srt_entry = f"{i}\n{format_time(sub['start'])} --> {format_time(sub['end'])}\n{sub['text']}\n\n" output += srt_entry srt_content += srt_entry srt_file_path = "transcription.srt" with open(srt_file_path, "w", encoding="utf-8") as srt_file: srt_file.write(srt_content) output += f"\nSRT file saved as: {srt_file_path}" yield output, srt_file_path def format_time(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',') iface = gr.Interface( fn=transcribe, inputs=[ gr.Video(), gr.Checkbox(label="Transcribe to Text"), gr.Checkbox(label="Transcribe to SRT"), gr.Dropdown(choices=['en', 'he', 'it', 'es', 'fr', 'de', 'zh', 'ar'], label="Language") ], outputs=[ gr.Textbox(label="Transcription Output"), gr.File(label="Download SRT") ], title="WhisperCap Video Transcription", description="Upload a video file to transcribe its audio using Whisper. You can download the SRT file if generated.", ) iface.launch(share=True)