Spaces:
Sleeping
Sleeping
vaibhavs10
commited on
Commit
·
12b6ee7
1
Parent(s):
68ffe75
Adding YT transcription code
Browse files
app.py
CHANGED
@@ -1,66 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
import librosa
|
5 |
-
import soundfile
|
6 |
|
7 |
MODEL_NAME = "openai/whisper-small"
|
8 |
-
lang = "ja"
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
if len(speech.shape) > 1:
|
19 |
-
speech = speech[:,0] + speech[:,1]
|
20 |
-
if sample_rate !=16000:
|
21 |
-
speech = librosa.resample(speech, sample_rate,16000)
|
22 |
-
speech = librosa.to_mono(speech)
|
23 |
-
return speech
|
24 |
|
25 |
|
26 |
-
def transcribe(
|
27 |
warn_output = ""
|
28 |
-
if (
|
29 |
-
warn_output =
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
elif (
|
34 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
35 |
|
36 |
-
|
37 |
-
file = Microphone
|
38 |
-
else:
|
39 |
-
file = File_Upload
|
40 |
-
|
41 |
-
speech_data = load_and_fix_data(file)
|
42 |
|
43 |
-
|
44 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang, task="transcribe")
|
45 |
-
|
46 |
-
predicted_ids = model.generate(inputs, max_length=480_000, forced_decoder_ids=forced_decoder_ids)
|
47 |
-
text = processor.batch_decode(predicted_ids, skip_special_tokens=True, normalize=True)[0]
|
48 |
|
49 |
return warn_output + text
|
50 |
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
fn=transcribe,
|
54 |
inputs=[
|
55 |
-
gr.inputs.Audio(source="microphone", type=
|
56 |
-
gr.inputs.Audio(source="upload", type=
|
57 |
],
|
58 |
outputs="text",
|
59 |
layout="horizontal",
|
60 |
theme="huggingface",
|
61 |
-
title="
|
62 |
-
description="
|
63 |
-
allow_flagging=
|
64 |
)
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import pytube as pt
|
|
|
|
|
4 |
|
5 |
MODEL_NAME = "openai/whisper-small"
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
+
pipe = pipeline(
|
10 |
+
task="automatic-speech-recognition",
|
11 |
+
model=MODEL_NAME,
|
12 |
+
chunk_length_s=30,
|
13 |
+
device=device,
|
14 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
+
def transcribe(microphone, file_upload):
|
18 |
warn_output = ""
|
19 |
+
if (microphone is not None) and (file_upload is not None):
|
20 |
+
warn_output = (
|
21 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
22 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
23 |
+
)
|
24 |
+
file = microphone
|
25 |
|
26 |
+
elif (microphone is None) and (file_upload is None):
|
27 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
28 |
|
29 |
+
file = microphone if microphone is not None else file_upload
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
text = pipe(file)["text"]
|
|
|
|
|
|
|
|
|
32 |
|
33 |
return warn_output + text
|
34 |
|
35 |
|
36 |
+
def yt_transcribe(yt_url):
|
37 |
+
|
38 |
+
yt = pt.YouTube(yt_url)
|
39 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
40 |
+
stream.download(filename="audio.mp3")
|
41 |
+
|
42 |
+
text = pipe("audio.mp3")["text"]
|
43 |
+
|
44 |
+
return text
|
45 |
+
|
46 |
+
|
47 |
+
demo = gr.Blocks()
|
48 |
+
|
49 |
+
mf_transcribe = gr.Interface(
|
50 |
fn=transcribe,
|
51 |
inputs=[
|
52 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
53 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
54 |
],
|
55 |
outputs="text",
|
56 |
layout="horizontal",
|
57 |
theme="huggingface",
|
58 |
+
title="Whisper Audio Transcribe",
|
59 |
+
description="Transcribe long audio/ microphone input (powered by 🤗transformers) with a click of a button!",
|
60 |
+
allow_flagging="never",
|
61 |
)
|
62 |
|
63 |
+
yt_transcribe = gr.Interface(
|
64 |
+
fn=yt_transcribe,
|
65 |
+
inputs=[
|
66 |
+
gr.inputs.Textbox(
|
67 |
+
lines=1, placeholder="Paste a URL to YT video here", label="yt_url"
|
68 |
+
)
|
69 |
+
],
|
70 |
+
outputs="text",
|
71 |
+
layout="horizontal",
|
72 |
+
theme="huggingface",
|
73 |
+
title="Whisper YT Transcribe",
|
74 |
+
description="Transcribe long YouTube videos (powered by 🤗transformers) with a click of a button!",
|
75 |
+
allow_flagging="never",
|
76 |
+
)
|
77 |
+
|
78 |
+
with demo:
|
79 |
+
gr.TabbedInterface(
|
80 |
+
[mf_transcribe, yt_transcribe], ["Audio Transcribe", "YouTube Transcribe"]
|
81 |
+
)
|
82 |
+
|
83 |
+
demo.launch(enable_queue=True)
|