Spaces:
Sleeping
Sleeping
Commit
·
4b2e949
1
Parent(s):
0e268b1
Update app.py (#5)
Browse files- Update app.py (75634697925a2f539634e0b6807b4d5ec1957e8b)
Co-authored-by: Sanchit Gandhi <[email protected]>
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
4 |
import pytube as pt
|
|
|
|
|
5 |
|
6 |
MODEL_NAME = "openai/whisper-small"
|
7 |
|
@@ -22,7 +24,6 @@ def transcribe(microphone, file_upload):
|
|
22 |
"WARNING: You've uploaded an audio file and used the microphone. "
|
23 |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
24 |
)
|
25 |
-
file = microphone
|
26 |
|
27 |
elif (microphone is None) and (file_upload is None):
|
28 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
@@ -37,15 +38,13 @@ def transcribe(microphone, file_upload):
|
|
37 |
def _return_yt_html_embed(yt_url):
|
38 |
video_id = yt_url.split("?v=")[-1]
|
39 |
HTML_str = (
|
40 |
-
'<center
|
41 |
-
|
42 |
-
+ '"></iframe></center>'
|
43 |
)
|
44 |
return HTML_str
|
45 |
|
46 |
|
47 |
def yt_transcribe(yt_url):
|
48 |
-
|
49 |
yt = pt.YouTube(yt_url)
|
50 |
html_embed_str = _return_yt_html_embed(yt_url)
|
51 |
stream = yt.streams.filter(only_audio=True)[0]
|
@@ -67,29 +66,31 @@ mf_transcribe = gr.Interface(
|
|
67 |
outputs="text",
|
68 |
layout="horizontal",
|
69 |
theme="huggingface",
|
70 |
-
title="Whisper
|
71 |
-
description=
|
|
|
|
|
|
|
|
|
72 |
allow_flagging="never",
|
73 |
)
|
74 |
|
75 |
yt_transcribe = gr.Interface(
|
76 |
fn=yt_transcribe,
|
77 |
-
inputs=[
|
78 |
-
gr.inputs.Textbox(
|
79 |
-
lines=1, placeholder="Paste a URL to YT video here", label="yt_url"
|
80 |
-
)
|
81 |
-
],
|
82 |
outputs=["html", "text"],
|
83 |
layout="horizontal",
|
84 |
theme="huggingface",
|
85 |
-
title="Whisper
|
86 |
-
description=
|
|
|
|
|
|
|
|
|
87 |
allow_flagging="never",
|
88 |
)
|
89 |
|
90 |
with demo:
|
91 |
-
gr.TabbedInterface(
|
92 |
-
[mf_transcribe, yt_transcribe], ["Audio Transcribe", "YouTube Transcribe"]
|
93 |
-
)
|
94 |
|
95 |
demo.launch(enable_queue=True)
|
|
|
1 |
import torch
|
2 |
+
|
3 |
import gradio as gr
|
|
|
4 |
import pytube as pt
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
|
8 |
MODEL_NAME = "openai/whisper-small"
|
9 |
|
|
|
24 |
"WARNING: You've uploaded an audio file and used the microphone. "
|
25 |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
26 |
)
|
|
|
27 |
|
28 |
elif (microphone is None) and (file_upload is None):
|
29 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
|
|
38 |
def _return_yt_html_embed(yt_url):
|
39 |
video_id = yt_url.split("?v=")[-1]
|
40 |
HTML_str = (
|
41 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
42 |
+
" </center>"
|
|
|
43 |
)
|
44 |
return HTML_str
|
45 |
|
46 |
|
47 |
def yt_transcribe(yt_url):
|
|
|
48 |
yt = pt.YouTube(yt_url)
|
49 |
html_embed_str = _return_yt_html_embed(yt_url)
|
50 |
stream = yt.streams.filter(only_audio=True)[0]
|
|
|
66 |
outputs="text",
|
67 |
layout="horizontal",
|
68 |
theme="huggingface",
|
69 |
+
title="Whisper Demo: Transcribe Audio",
|
70 |
+
description=(
|
71 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
72 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
73 |
+
" of arbitrary length."
|
74 |
+
),
|
75 |
allow_flagging="never",
|
76 |
)
|
77 |
|
78 |
yt_transcribe = gr.Interface(
|
79 |
fn=yt_transcribe,
|
80 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
|
|
|
|
|
|
|
|
|
81 |
outputs=["html", "text"],
|
82 |
layout="horizontal",
|
83 |
theme="huggingface",
|
84 |
+
title="Whisper Demo: Transcribe YouTube",
|
85 |
+
description=(
|
86 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
87 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
88 |
+
" arbitrary length."
|
89 |
+
),
|
90 |
allow_flagging="never",
|
91 |
)
|
92 |
|
93 |
with demo:
|
94 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
|
|
|
|
95 |
|
96 |
demo.launch(enable_queue=True)
|