import torch import gradio as gr from transformers import pipeline import pytube as pt MODEL_NAME = "openai/whisper-small" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) file = microphone elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( '
' ) return HTML_str def yt_transcribe(yt_url): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") text = pipe("audio.mp3")["text"] return html_embed_str, text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Audio Transcribe", description="Transcribe long audio/ microphone input (powered by 🤗transformers) with a click of a button!", allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox( lines=1, placeholder="Paste a URL to YT video here", label="yt_url" ) ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Whisper YT Transcribe", description="Transcribe long YouTube videos (powered by 🤗transformers) with a click of a button!", allow_flagging="never", ) with demo: gr.TabbedInterface( [mf_transcribe, yt_transcribe], ["Audio Transcribe", "YouTube Transcribe"] ) demo.launch(enable_queue=True)