File size: 12,231 Bytes
ea02521
596ce81
3aa2ce4
2a06b1f
0bc7df2
 
273b01b
 
 
3aa2ce4
2a06b1f
273b01b
 
 
 
3aa2ce4
273b01b
2a06b1f
6a7b482
940de5b
6a7b482
 
 
 
3aa2ce4
6a7b482
940de5b
6a7b482
 
273b01b
 
 
3aa2ce4
 
 
273b01b
6a7b482
3aa2ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dce996d
3aa2ce4
dce996d
3aa2ce4
 
 
 
 
 
 
 
dce996d
273b01b
3aa2ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dce996d
3aa2ce4
273b01b
3aa2ce4
273b01b
3aa2ce4
 
 
596ce81
3aa2ce4
 
596ce81
3aa2ce4
 
 
 
 
 
273b01b
 
 
3aa2ce4
 
 
 
596ce81
3aa2ce4
 
596ce81
 
2a06b1f
3aa2ce4
 
 
 
 
 
 
 
 
 
 
 
 
6323c73
2eee636
 
 
1d1bb6e
ab5da9e
d8c258c
 
 
9d7c660
b3e0e63
 
21b61fa
2eee636
596ce81
6323c73
d8c258c
 
 
 
2263afc
0bc7df2
2a06b1f
3aa2ce4
2a06b1f
 
0bc7df2
 
3aa2ce4
 
 
0bc7df2
b5b30fd
3aa2ce4
 
 
 
d74e2ab
16f2c1e
21b61fa
1bb0117
3aa2ce4
ac1a0c2
3aa2ce4
0922281
 
 
3aa2ce4
 
0bc7df2
 
9b29685
3aa2ce4
 
 
 
 
 
 
0238b02
3aa2ce4
9b29685
3aa2ce4
596ce81
3aa2ce4
596ce81
3aa2ce4
23adf11
3aa2ce4
596ce81
9b29685
3aa2ce4
 
 
 
 
 
 
 
 
 
 
6a7b482
 
 
2263afc
470324c
2263afc
6a7b482
0238b02
0bc7df2
2a06b1f
 
3aa2ce4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
from gradio_client import Client, handle_file
from google import genai
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile
import ffmpeg

# --- Google Gemini API Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY environment variable not set.")
client = genai.Client(api_key=os.environ.get("GOOGLE_API_KEY"))
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'

def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
    """Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
    if not token:
        return False
    try:
        user_info = whoami(token=token.token)
        return user_info.get("isPro", False) or any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
    except Exception as e:
        print(f"Could not verify user's PRO/Enterprise status: {e}")
        return False

def _extract_image_data_from_response(response) -> Optional[bytes]:
    """Helper to extract image data from the model's response."""
    if hasattr(response, 'candidates') and response.candidates:
        for part in response.candidates[0].content.parts:
            if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                return part.inline_data.data
    return None

def _get_framerate(video_path: str) -> float:
    """Instantly gets the framerate of a video using ffprobe."""
    probe = ffmpeg.probe(video_path)
    video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
    if video_stream is None:
        raise ValueError("Could not find video stream in the file.")
    return eval(video_stream['avg_frame_rate'])

def _trim_first_frame_fast(video_path: str) -> str:
    """
    Removes exactly the first frame of a video without re-encoding.
    This is the frame-accurate and fast method.
    """
    gr.Info("Preparing video segment...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
        output_path = tmp_output_file.name
    
    try:
        framerate = _get_framerate(video_path)
        if framerate == 0: raise ValueError("Framerate cannot be zero.")
        start_time = 1 / framerate

        # The key is placing -ss AFTER -i for accuracy, combined with -c copy for speed.
        (
            ffmpeg
            .input(video_path, ss=start_time)
            .output(output_path, c='copy', avoid_negative_ts='make_zero')
            .run(overwrite_output=True, quiet=True)
        )
        return output_path
    except Exception as e:
        raise RuntimeError(f"FFmpeg trim error: {e}")

def _combine_videos_simple(video1_path: str, video2_path: str) -> str:
    """
    Combines two videos using the fast concat demuxer. Assumes video2 is already trimmed.
    """
    gr.Info("Stitching videos...")
    with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=".txt") as tmp_list_file:
        tmp_list_file.write(f"file '{os.path.abspath(video1_path)}'\n")
        tmp_list_file.write(f"file '{os.path.abspath(video2_path)}'\n")
        list_file_path = tmp_list_file.name

    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
        output_path = tmp_output_file.name

    try:
        (
            ffmpeg
            .input(list_file_path, format='concat', safe=0)
            .output(output_path, c='copy')
            .run(overwrite_output=True, quiet=True)
        )
        return output_path
    except ffmpeg.Error as e:
        raise RuntimeError(f"FFmpeg combine error: {e.stderr.decode()}")
    finally:
        if os.path.exists(list_file_path):
            os.remove(list_file_path)

def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, token: str) -> str:
    """Generates a single video segment using the external service."""
    gr.Info("Generating new video segment...")
    video_client = Client("multimodalart/wan-2-2-first-last-frame", hf_token=token)
    result = video_client.predict(
        start_image_pil=handle_file(input_image_path),
        end_image_pil=handle_file(output_image_path),
        prompt=prompt, api_name="/generate_video"
    )
    return result[0]["video"]

def unified_image_generator(prompt: str, images: Optional[List[str]], previous_video_path: Optional[str], oauth_token: Optional[gr.OAuthToken]) -> tuple:
    """
    Handles image generation and determines the visibility of video creation buttons.
    """
    if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
    try:
        contents = [Image.open(image_path[0]) for image_path in images] if images else []
        contents.append(prompt)
        response = client.models.generate_content(model=GEMINI_MODEL_NAME, contents=contents)
        image_data = _extract_image_data_from_response(response)
        if not image_data: raise ValueError("No image data in response.")
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            Image.open(BytesIO(image_data)).save(tmp.name)
            output_path = tmp.name
        
        can_create_video = bool(images and len(images) == 1)
        can_extend_video = can_create_video and bool(previous_video_path)
        
        return (
            output_path,
            gr.update(visible=can_create_video),
            gr.update(visible=can_extend_video),
            gr.update(visible=False)
        )
    except Exception as e:
        raise gr.Error(f"Image generation failed: {e}")

def create_new_video(input_image_gallery: List[str], prompt_input: str, output_image: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
    """Starts a NEW video chain, overwriting any previous video state."""
    if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
    if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
    try:
        new_segment_path = _generate_video_segment(input_image_gallery[0][0], output_image, prompt_input, oauth_token.token)
        return new_segment_path, new_segment_path
    except Exception as e:
        raise gr.Error(f"Video creation failed: {e}")

def extend_existing_video(input_image_gallery: List[str], prompt_input: str, output_image: str, previous_video_path: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
    """Extends an existing video with a new segment."""
    if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
    if not previous_video_path: raise gr.Error("No previous video to extend.")
    if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
    try:
        new_segment_path = _generate_video_segment(input_image_gallery[0][0], output_image, prompt_input, oauth_token.token)
        trimmed_segment_path = _trim_first_frame_fast(new_segment_path)
        final_video_path = _combine_videos_simple(previous_video_path, trimmed_segment_path)
        return final_video_path, final_video_path
    except Exception as e:
        raise gr.Error(f"Video extension failed: {e}")

css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
.grid-container img{object-fit: contain}
.grid-container {display: grid;grid-template-columns: repeat(2, 1fr)}
.grid-container:has(> .gallery-item:only-child) {grid-template-columns: 1fr}
#wan_ad p{text-align: center;padding: .5em}
'''

with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    gr.HTML('''
    <img class="logo-dark" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='margin: 0 auto; max-width: 500px' />
    <img class="logo-light" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros_light.png' style='margin: 0 auto; max-width: 500px' />
    ''')
    gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='http://huggingface.co/subscribe/pro?source=nana_banana' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")
    pro_message = gr.Markdown(visible=False)
    main_interface = gr.Column(visible=False)
    previous_video_state = gr.State(None)

    with main_interface:
        with gr.Row():
            with gr.Column(scale=1):
                image_input_gallery = gr.Gallery(label="Upload one or more images here. Leave empty for text-to-image", file_types=["image"], height="auto")
                prompt_input = gr.Textbox(label="Prompt", placeholder="Turns this photo into a masterpiece")
                generate_button = gr.Button("Generate", variant="primary")
            with gr.Column(scale=1):
                output_image = gr.Image(label="Output", interactive=False, elem_id="output", type="filepath")
                use_image_button = gr.Button("♻️ Use this Image for Next Edit", variant="primary")
                with gr.Row():
                    create_video_button = gr.Button("Create video between the two images 🎥", variant="secondary", visible=False)
                    extend_video_button = gr.Button("Extend previous video with new scene 🎞️", variant="secondary", visible=False)
                with gr.Group(visible=False) as video_group:
                    video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
                    gr.Markdown("Generate more with [Wan 2.2 first-last-frame](https://huggingface.co/spaces/multimodalart/wan-2-2-first-last-frame)", elem_id="wan_ad")
        gr.Markdown("## Thank you for being a PRO! 🤗")

    login_button = gr.LoginButton()

    gr.on(
        triggers=[generate_button.click, prompt_input.submit],
        fn=unified_image_generator,
        inputs=[prompt_input, image_input_gallery, previous_video_state],
        outputs=[output_image, create_video_button, extend_video_button, video_group]
    )

    use_image_button.click(
        fn=lambda img: (
            [img] if img else None,
            None,
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False)
        ),
        inputs=[output_image],
        outputs=[image_input_gallery, output_image, create_video_button, extend_video_button, video_group]
    )

    create_video_button.click(
        fn=lambda: gr.update(visible=True), outputs=[video_group]
    ).then(
        fn=create_new_video,
        inputs=[image_input_gallery, prompt_input, output_image],
        outputs=[video_output, previous_video_state],
    )

    extend_video_button.click(
        fn=lambda: gr.update(visible=True), outputs=[video_group]
    ).then(
        fn=extend_existing_video,
        inputs=[image_input_gallery, prompt_input, output_image, previous_video_state],
        outputs=[video_output, previous_video_state],
    )

    def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
        if not profile: return gr.update(visible=False), gr.update(visible=False)
        if verify_pro_status(oauth_token): return gr.update(visible=True), gr.update(visible=False)
        else:
            message = (
                "## ✨ Exclusive Access for PRO Users\n\n"
                "Thank you for your interest! This app is available exclusively for our Hugging Face **PRO** members.\n\n"
                "To unlock this and many other cool stuff, please consider upgrading your account.\n\n"
                "### [**Become a PRO Today!**](http://huggingface.co/subscribe/pro?source=nana_banana)"
            )
            return gr.update(visible=False), gr.update(visible=True, value=message)
    demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])

if __name__ == "__main__":
    demo.queue(max_size=None, default_concurrency_limit=None).launch()