Spaces:
Runtime error
Runtime error
File size: 12,231 Bytes
ea02521 596ce81 3aa2ce4 2a06b1f 0bc7df2 273b01b 3aa2ce4 2a06b1f 273b01b 3aa2ce4 273b01b 2a06b1f 6a7b482 940de5b 6a7b482 3aa2ce4 6a7b482 940de5b 6a7b482 273b01b 3aa2ce4 273b01b 6a7b482 3aa2ce4 dce996d 3aa2ce4 dce996d 3aa2ce4 dce996d 273b01b 3aa2ce4 dce996d 3aa2ce4 273b01b 3aa2ce4 273b01b 3aa2ce4 596ce81 3aa2ce4 596ce81 3aa2ce4 273b01b 3aa2ce4 596ce81 3aa2ce4 596ce81 2a06b1f 3aa2ce4 6323c73 2eee636 1d1bb6e ab5da9e d8c258c 9d7c660 b3e0e63 21b61fa 2eee636 596ce81 6323c73 d8c258c 2263afc 0bc7df2 2a06b1f 3aa2ce4 2a06b1f 0bc7df2 3aa2ce4 0bc7df2 b5b30fd 3aa2ce4 d74e2ab 16f2c1e 21b61fa 1bb0117 3aa2ce4 ac1a0c2 3aa2ce4 0922281 3aa2ce4 0bc7df2 9b29685 3aa2ce4 0238b02 3aa2ce4 9b29685 3aa2ce4 596ce81 3aa2ce4 596ce81 3aa2ce4 23adf11 3aa2ce4 596ce81 9b29685 3aa2ce4 6a7b482 2263afc 470324c 2263afc 6a7b482 0238b02 0bc7df2 2a06b1f 3aa2ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
from gradio_client import Client, handle_file
from google import genai
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile
import ffmpeg
# --- Google Gemini API Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
client = genai.Client(api_key=os.environ.get("GOOGLE_API_KEY"))
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False) or any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def _extract_image_data_from_response(response) -> Optional[bytes]:
"""Helper to extract image data from the model's response."""
if hasattr(response, 'candidates') and response.candidates:
for part in response.candidates[0].content.parts:
if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
return part.inline_data.data
return None
def _get_framerate(video_path: str) -> float:
"""Instantly gets the framerate of a video using ffprobe."""
probe = ffmpeg.probe(video_path)
video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
if video_stream is None:
raise ValueError("Could not find video stream in the file.")
return eval(video_stream['avg_frame_rate'])
def _trim_first_frame_fast(video_path: str) -> str:
"""
Removes exactly the first frame of a video without re-encoding.
This is the frame-accurate and fast method.
"""
gr.Info("Preparing video segment...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
output_path = tmp_output_file.name
try:
framerate = _get_framerate(video_path)
if framerate == 0: raise ValueError("Framerate cannot be zero.")
start_time = 1 / framerate
# The key is placing -ss AFTER -i for accuracy, combined with -c copy for speed.
(
ffmpeg
.input(video_path, ss=start_time)
.output(output_path, c='copy', avoid_negative_ts='make_zero')
.run(overwrite_output=True, quiet=True)
)
return output_path
except Exception as e:
raise RuntimeError(f"FFmpeg trim error: {e}")
def _combine_videos_simple(video1_path: str, video2_path: str) -> str:
"""
Combines two videos using the fast concat demuxer. Assumes video2 is already trimmed.
"""
gr.Info("Stitching videos...")
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=".txt") as tmp_list_file:
tmp_list_file.write(f"file '{os.path.abspath(video1_path)}'\n")
tmp_list_file.write(f"file '{os.path.abspath(video2_path)}'\n")
list_file_path = tmp_list_file.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
output_path = tmp_output_file.name
try:
(
ffmpeg
.input(list_file_path, format='concat', safe=0)
.output(output_path, c='copy')
.run(overwrite_output=True, quiet=True)
)
return output_path
except ffmpeg.Error as e:
raise RuntimeError(f"FFmpeg combine error: {e.stderr.decode()}")
finally:
if os.path.exists(list_file_path):
os.remove(list_file_path)
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, token: str) -> str:
"""Generates a single video segment using the external service."""
gr.Info("Generating new video segment...")
video_client = Client("multimodalart/wan-2-2-first-last-frame", hf_token=token)
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video"
)
return result[0]["video"]
def unified_image_generator(prompt: str, images: Optional[List[str]], previous_video_path: Optional[str], oauth_token: Optional[gr.OAuthToken]) -> tuple:
"""
Handles image generation and determines the visibility of video creation buttons.
"""
if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
try:
contents = [Image.open(image_path[0]) for image_path in images] if images else []
contents.append(prompt)
response = client.models.generate_content(model=GEMINI_MODEL_NAME, contents=contents)
image_data = _extract_image_data_from_response(response)
if not image_data: raise ValueError("No image data in response.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
Image.open(BytesIO(image_data)).save(tmp.name)
output_path = tmp.name
can_create_video = bool(images and len(images) == 1)
can_extend_video = can_create_video and bool(previous_video_path)
return (
output_path,
gr.update(visible=can_create_video),
gr.update(visible=can_extend_video),
gr.update(visible=False)
)
except Exception as e:
raise gr.Error(f"Image generation failed: {e}")
def create_new_video(input_image_gallery: List[str], prompt_input: str, output_image: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
"""Starts a NEW video chain, overwriting any previous video state."""
if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
try:
new_segment_path = _generate_video_segment(input_image_gallery[0][0], output_image, prompt_input, oauth_token.token)
return new_segment_path, new_segment_path
except Exception as e:
raise gr.Error(f"Video creation failed: {e}")
def extend_existing_video(input_image_gallery: List[str], prompt_input: str, output_image: str, previous_video_path: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
"""Extends an existing video with a new segment."""
if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
if not previous_video_path: raise gr.Error("No previous video to extend.")
if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
try:
new_segment_path = _generate_video_segment(input_image_gallery[0][0], output_image, prompt_input, oauth_token.token)
trimmed_segment_path = _trim_first_frame_fast(new_segment_path)
final_video_path = _combine_videos_simple(previous_video_path, trimmed_segment_path)
return final_video_path, final_video_path
except Exception as e:
raise gr.Error(f"Video extension failed: {e}")
css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
.grid-container img{object-fit: contain}
.grid-container {display: grid;grid-template-columns: repeat(2, 1fr)}
.grid-container:has(> .gallery-item:only-child) {grid-template-columns: 1fr}
#wan_ad p{text-align: center;padding: .5em}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
gr.HTML('''
<img class="logo-dark" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='margin: 0 auto; max-width: 500px' />
<img class="logo-light" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros_light.png' style='margin: 0 auto; max-width: 500px' />
''')
gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='http://huggingface.co/subscribe/pro?source=nana_banana' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
previous_video_state = gr.State(None)
with main_interface:
with gr.Row():
with gr.Column(scale=1):
image_input_gallery = gr.Gallery(label="Upload one or more images here. Leave empty for text-to-image", file_types=["image"], height="auto")
prompt_input = gr.Textbox(label="Prompt", placeholder="Turns this photo into a masterpiece")
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Output", interactive=False, elem_id="output", type="filepath")
use_image_button = gr.Button("♻️ Use this Image for Next Edit", variant="primary")
with gr.Row():
create_video_button = gr.Button("Create video between the two images 🎥", variant="secondary", visible=False)
extend_video_button = gr.Button("Extend previous video with new scene 🎞️", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
gr.Markdown("Generate more with [Wan 2.2 first-last-frame](https://huggingface.co/spaces/multimodalart/wan-2-2-first-last-frame)", elem_id="wan_ad")
gr.Markdown("## Thank you for being a PRO! 🤗")
login_button = gr.LoginButton()
gr.on(
triggers=[generate_button.click, prompt_input.submit],
fn=unified_image_generator,
inputs=[prompt_input, image_input_gallery, previous_video_state],
outputs=[output_image, create_video_button, extend_video_button, video_group]
)
use_image_button.click(
fn=lambda img: (
[img] if img else None,
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
),
inputs=[output_image],
outputs=[image_input_gallery, output_image, create_video_button, extend_video_button, video_group]
)
create_video_button.click(
fn=lambda: gr.update(visible=True), outputs=[video_group]
).then(
fn=create_new_video,
inputs=[image_input_gallery, prompt_input, output_image],
outputs=[video_output, previous_video_state],
)
extend_video_button.click(
fn=lambda: gr.update(visible=True), outputs=[video_group]
).then(
fn=extend_existing_video,
inputs=[image_input_gallery, prompt_input, output_image, previous_video_state],
outputs=[video_output, previous_video_state],
)
def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
if not profile: return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token): return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This app is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other cool stuff, please consider upgrading your account.\n\n"
"### [**Become a PRO Today!**](http://huggingface.co/subscribe/pro?source=nana_banana)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.queue(max_size=None, default_concurrency_limit=None).launch() |